This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| eldprdi.3 | |- ( ph -> F e. W ) |
||
| dprdf11.4 | |- ( ph -> H e. W ) |
||
| Assertion | dprdf11 | |- ( ph -> ( ( G gsum F ) = ( G gsum H ) <-> F = H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | eldprdi.3 | |- ( ph -> F e. W ) |
|
| 6 | dprdf11.4 | |- ( ph -> H e. W ) |
|
| 7 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 8 | 2 3 4 5 7 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 9 | 8 | ffnd | |- ( ph -> F Fn I ) |
| 10 | 2 3 4 6 7 | dprdff | |- ( ph -> H : I --> ( Base ` G ) ) |
| 11 | 10 | ffnd | |- ( ph -> H Fn I ) |
| 12 | eqfnfv | |- ( ( F Fn I /\ H Fn I ) -> ( F = H <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ph -> ( F = H <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 14 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 15 | 1 2 3 4 5 6 14 | dprdfsub | |- ( ph -> ( ( F oF ( -g ` G ) H ) e. W /\ ( G gsum ( F oF ( -g ` G ) H ) ) = ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) ) ) |
| 16 | 15 | simpld | |- ( ph -> ( F oF ( -g ` G ) H ) e. W ) |
| 17 | 1 2 3 4 16 | dprdfeq0 | |- ( ph -> ( ( G gsum ( F oF ( -g ` G ) H ) ) = .0. <-> ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) ) ) |
| 18 | 15 | simprd | |- ( ph -> ( G gsum ( F oF ( -g ` G ) H ) ) = ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) ) |
| 19 | 18 | eqeq1d | |- ( ph -> ( ( G gsum ( F oF ( -g ` G ) H ) ) = .0. <-> ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. ) ) |
| 20 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 21 | fvexd | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. _V ) |
|
| 22 | fvexd | |- ( ( ph /\ x e. I ) -> ( H ` x ) e. _V ) |
|
| 23 | 8 | feqmptd | |- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 24 | 10 | feqmptd | |- ( ph -> H = ( x e. I |-> ( H ` x ) ) ) |
| 25 | 20 21 22 23 24 | offval2 | |- ( ph -> ( F oF ( -g ` G ) H ) = ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) ) |
| 26 | 25 | eqeq1d | |- ( ph -> ( ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) <-> ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) ) ) |
| 27 | ovex | |- ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V |
|
| 28 | 27 | rgenw | |- A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V |
| 29 | mpteqb | |- ( A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V -> ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. ) ) |
|
| 30 | 28 29 | ax-mp | |- ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. ) |
| 31 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 32 | 3 31 | syl | |- ( ph -> G e. Grp ) |
| 33 | 32 | adantr | |- ( ( ph /\ x e. I ) -> G e. Grp ) |
| 34 | 8 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` G ) ) |
| 35 | 10 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( H ` x ) e. ( Base ` G ) ) |
| 36 | 7 1 14 | grpsubeq0 | |- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) /\ ( H ` x ) e. ( Base ` G ) ) -> ( ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> ( F ` x ) = ( H ` x ) ) ) |
| 37 | 33 34 35 36 | syl3anc | |- ( ( ph /\ x e. I ) -> ( ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> ( F ` x ) = ( H ` x ) ) ) |
| 38 | 37 | ralbidva | |- ( ph -> ( A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 39 | 30 38 | bitrid | |- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 40 | 26 39 | bitrd | |- ( ph -> ( ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 41 | 17 19 40 | 3bitr3d | |- ( ph -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 42 | 7 | dprdssv | |- ( G DProd S ) C_ ( Base ` G ) |
| 43 | 1 2 3 4 5 | eldprdi | |- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |
| 44 | 42 43 | sselid | |- ( ph -> ( G gsum F ) e. ( Base ` G ) ) |
| 45 | 1 2 3 4 6 | eldprdi | |- ( ph -> ( G gsum H ) e. ( G DProd S ) ) |
| 46 | 42 45 | sselid | |- ( ph -> ( G gsum H ) e. ( Base ` G ) ) |
| 47 | 7 1 14 | grpsubeq0 | |- ( ( G e. Grp /\ ( G gsum F ) e. ( Base ` G ) /\ ( G gsum H ) e. ( Base ` G ) ) -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> ( G gsum F ) = ( G gsum H ) ) ) |
| 48 | 32 44 46 47 | syl3anc | |- ( ph -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> ( G gsum F ) = ( G gsum H ) ) ) |
| 49 | 13 41 48 | 3bitr2rd | |- ( ph -> ( ( G gsum F ) = ( G gsum H ) <-> F = H ) ) |