This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgsubm | |- ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 2 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 3 | 2 | issubg3 | |- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( S e. ( SubMnd ` G ) /\ A. x e. S ( ( invg ` G ) ` x ) e. S ) ) ) |
| 4 | 1 3 | syl | |- ( S e. ( SubGrp ` G ) -> ( S e. ( SubGrp ` G ) <-> ( S e. ( SubMnd ` G ) /\ A. x e. S ( ( invg ` G ) ` x ) e. S ) ) ) |
| 5 | 4 | ibi | |- ( S e. ( SubGrp ` G ) -> ( S e. ( SubMnd ` G ) /\ A. x e. S ( ( invg ` G ) ` x ) e. S ) ) |
| 6 | 5 | simpld | |- ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) ) |