This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other n -th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpsqrt | |- ( A e. CC -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 2 | halfre | |- ( 1 / 2 ) e. RR |
|
| 3 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
| 4 | 2 3 | gt0ne0ii | |- ( 1 / 2 ) =/= 0 |
| 5 | 0cxp | |- ( ( ( 1 / 2 ) e. CC /\ ( 1 / 2 ) =/= 0 ) -> ( 0 ^c ( 1 / 2 ) ) = 0 ) |
|
| 6 | 1 4 5 | mp2an | |- ( 0 ^c ( 1 / 2 ) ) = 0 |
| 7 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 8 | 6 7 | eqtr4i | |- ( 0 ^c ( 1 / 2 ) ) = ( sqrt ` 0 ) |
| 9 | oveq1 | |- ( A = 0 -> ( A ^c ( 1 / 2 ) ) = ( 0 ^c ( 1 / 2 ) ) ) |
|
| 10 | fveq2 | |- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
|
| 11 | 8 9 10 | 3eqtr4a | |- ( A = 0 -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
| 12 | 11 | a1i | |- ( A e. CC -> ( A = 0 -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
| 13 | ax-icn | |- _i e. CC |
|
| 14 | sqrtcl | |- ( A e. CC -> ( sqrt ` A ) e. CC ) |
|
| 15 | 14 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) e. CC ) |
| 16 | sqmul | |- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
|
| 17 | 13 15 16 | sylancr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
| 18 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 19 | 18 | a1i | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i ^ 2 ) = -u 1 ) |
| 20 | sqrtth | |- ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
| 21 | 20 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 22 | 19 21 | oveq12d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) = ( -u 1 x. A ) ) |
| 23 | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
|
| 24 | 23 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u 1 x. A ) = -u A ) |
| 25 | 17 22 24 | 3eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A ) |
| 26 | cxpsqrtlem | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. RR ) |
|
| 27 | 26 | resqcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) e. RR ) |
| 28 | 25 27 | eqeltrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A e. RR ) |
| 29 | negeq0 | |- ( A e. CC -> ( A = 0 <-> -u A = 0 ) ) |
|
| 30 | 29 | necon3bid | |- ( A e. CC -> ( A =/= 0 <-> -u A =/= 0 ) ) |
| 31 | 30 | biimpa | |- ( ( A e. CC /\ A =/= 0 ) -> -u A =/= 0 ) |
| 32 | 31 | adantr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A =/= 0 ) |
| 33 | 25 32 | eqnetrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) =/= 0 ) |
| 34 | sq0i | |- ( ( _i x. ( sqrt ` A ) ) = 0 -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = 0 ) |
|
| 35 | 34 | necon3i | |- ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) =/= 0 -> ( _i x. ( sqrt ` A ) ) =/= 0 ) |
| 36 | 33 35 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) =/= 0 ) |
| 37 | 26 36 | sqgt0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 < ( ( _i x. ( sqrt ` A ) ) ^ 2 ) ) |
| 38 | 37 25 | breqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 < -u A ) |
| 39 | 28 38 | elrpd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A e. RR+ ) |
| 40 | logneg | |- ( -u A e. RR+ -> ( log ` -u -u A ) = ( ( log ` -u A ) + ( _i x. _pi ) ) ) |
|
| 41 | 39 40 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u -u A ) = ( ( log ` -u A ) + ( _i x. _pi ) ) ) |
| 42 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 43 | 42 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u -u A = A ) |
| 44 | 43 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u -u A ) = ( log ` A ) ) |
| 45 | 39 | relogcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u A ) e. RR ) |
| 46 | 45 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u A ) e. CC ) |
| 47 | picn | |- _pi e. CC |
|
| 48 | 13 47 | mulcli | |- ( _i x. _pi ) e. CC |
| 49 | addcom | |- ( ( ( log ` -u A ) e. CC /\ ( _i x. _pi ) e. CC ) -> ( ( log ` -u A ) + ( _i x. _pi ) ) = ( ( _i x. _pi ) + ( log ` -u A ) ) ) |
|
| 50 | 46 48 49 | sylancl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( log ` -u A ) + ( _i x. _pi ) ) = ( ( _i x. _pi ) + ( log ` -u A ) ) ) |
| 51 | 41 44 50 | 3eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` A ) = ( ( _i x. _pi ) + ( log ` -u A ) ) ) |
| 52 | 51 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` A ) ) = ( ( 1 / 2 ) x. ( ( _i x. _pi ) + ( log ` -u A ) ) ) ) |
| 53 | adddi | |- ( ( ( 1 / 2 ) e. CC /\ ( _i x. _pi ) e. CC /\ ( log ` -u A ) e. CC ) -> ( ( 1 / 2 ) x. ( ( _i x. _pi ) + ( log ` -u A ) ) ) = ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
|
| 54 | 1 48 46 53 | mp3an12i | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( ( _i x. _pi ) + ( log ` -u A ) ) ) = ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
| 55 | 52 54 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` A ) ) = ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
| 56 | 2cn | |- 2 e. CC |
|
| 57 | 2ne0 | |- 2 =/= 0 |
|
| 58 | divrec2 | |- ( ( ( _i x. _pi ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( _i x. _pi ) / 2 ) = ( ( 1 / 2 ) x. ( _i x. _pi ) ) ) |
|
| 59 | 48 56 57 58 | mp3an | |- ( ( _i x. _pi ) / 2 ) = ( ( 1 / 2 ) x. ( _i x. _pi ) ) |
| 60 | 13 47 56 57 | divassi | |- ( ( _i x. _pi ) / 2 ) = ( _i x. ( _pi / 2 ) ) |
| 61 | 59 60 | eqtr3i | |- ( ( 1 / 2 ) x. ( _i x. _pi ) ) = ( _i x. ( _pi / 2 ) ) |
| 62 | 61 | oveq1i | |- ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) = ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) |
| 63 | 55 62 | eqtrdi | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` A ) ) = ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
| 64 | 63 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( exp ` ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) ) |
| 65 | 47 56 57 | divcli | |- ( _pi / 2 ) e. CC |
| 66 | 13 65 | mulcli | |- ( _i x. ( _pi / 2 ) ) e. CC |
| 67 | mulcl | |- ( ( ( 1 / 2 ) e. CC /\ ( log ` -u A ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` -u A ) ) e. CC ) |
|
| 68 | 1 46 67 | sylancr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` -u A ) ) e. CC ) |
| 69 | efadd | |- ( ( ( _i x. ( _pi / 2 ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` -u A ) ) e. CC ) -> ( exp ` ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) = ( ( exp ` ( _i x. ( _pi / 2 ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) ) |
|
| 70 | 66 68 69 | sylancr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) = ( ( exp ` ( _i x. ( _pi / 2 ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) ) |
| 71 | efhalfpi | |- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |
|
| 72 | 71 | a1i | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i ) |
| 73 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 74 | 73 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A e. CC ) |
| 75 | 1 | a1i | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( 1 / 2 ) e. CC ) |
| 76 | cxpef | |- ( ( -u A e. CC /\ -u A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( -u A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
|
| 77 | 74 32 75 76 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
| 78 | ax-1cn | |- 1 e. CC |
|
| 79 | 2halves | |- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
|
| 80 | 78 79 | ax-mp | |- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 81 | 80 | oveq2i | |- ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( -u A ^c 1 ) |
| 82 | cxp1 | |- ( -u A e. CC -> ( -u A ^c 1 ) = -u A ) |
|
| 83 | 74 82 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c 1 ) = -u A ) |
| 84 | 81 83 | eqtrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = -u A ) |
| 85 | rpcxpcl | |- ( ( -u A e. RR+ /\ ( 1 / 2 ) e. RR ) -> ( -u A ^c ( 1 / 2 ) ) e. RR+ ) |
|
| 86 | 39 2 85 | sylancl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) e. RR+ ) |
| 87 | 86 | rpcnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) e. CC ) |
| 88 | 87 | sqvald | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( -u A ^c ( 1 / 2 ) ) x. ( -u A ^c ( 1 / 2 ) ) ) ) |
| 89 | cxpadd | |- ( ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( -u A ^c ( 1 / 2 ) ) x. ( -u A ^c ( 1 / 2 ) ) ) ) |
|
| 90 | 74 32 75 75 89 | syl211anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( -u A ^c ( 1 / 2 ) ) x. ( -u A ^c ( 1 / 2 ) ) ) ) |
| 91 | 88 90 | eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 92 | 74 | sqsqrtd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( sqrt ` -u A ) ^ 2 ) = -u A ) |
| 93 | 84 91 92 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` -u A ) ^ 2 ) ) |
| 94 | 86 | rprege0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) e. RR /\ 0 <_ ( -u A ^c ( 1 / 2 ) ) ) ) |
| 95 | 39 | rpsqrtcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` -u A ) e. RR+ ) |
| 96 | 95 | rprege0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( sqrt ` -u A ) e. RR /\ 0 <_ ( sqrt ` -u A ) ) ) |
| 97 | sq11 | |- ( ( ( ( -u A ^c ( 1 / 2 ) ) e. RR /\ 0 <_ ( -u A ^c ( 1 / 2 ) ) ) /\ ( ( sqrt ` -u A ) e. RR /\ 0 <_ ( sqrt ` -u A ) ) ) -> ( ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` -u A ) ^ 2 ) <-> ( -u A ^c ( 1 / 2 ) ) = ( sqrt ` -u A ) ) ) |
|
| 98 | 94 96 97 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` -u A ) ^ 2 ) <-> ( -u A ^c ( 1 / 2 ) ) = ( sqrt ` -u A ) ) ) |
| 99 | 93 98 | mpbid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) = ( sqrt ` -u A ) ) |
| 100 | 77 99 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) = ( sqrt ` -u A ) ) |
| 101 | 72 100 | oveq12d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( exp ` ( _i x. ( _pi / 2 ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) = ( _i x. ( sqrt ` -u A ) ) ) |
| 102 | 64 70 101 | 3eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( _i x. ( sqrt ` -u A ) ) ) |
| 103 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
|
| 104 | 1 103 | mp3an3 | |- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
| 105 | 104 | adantr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
| 106 | 43 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` -u -u A ) = ( sqrt ` A ) ) |
| 107 | 39 | rpge0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ -u A ) |
| 108 | 28 107 | sqrtnegd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` -u -u A ) = ( _i x. ( sqrt ` -u A ) ) ) |
| 109 | 106 108 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) = ( _i x. ( sqrt ` -u A ) ) ) |
| 110 | 102 105 109 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
| 111 | 110 | ex | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
| 112 | 80 | oveq2i | |- ( A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( A ^c 1 ) |
| 113 | cxpadd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
|
| 114 | 1 1 113 | mp3an23 | |- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
| 115 | cxp1 | |- ( A e. CC -> ( A ^c 1 ) = A ) |
|
| 116 | 115 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c 1 ) = A ) |
| 117 | 112 114 116 | 3eqtr3a | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) = A ) |
| 118 | cxpcl | |- ( ( A e. CC /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) e. CC ) |
|
| 119 | 1 118 | mpan2 | |- ( A e. CC -> ( A ^c ( 1 / 2 ) ) e. CC ) |
| 120 | 119 | sqvald | |- ( A e. CC -> ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
| 121 | 120 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
| 122 | 20 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 123 | 117 121 122 | 3eqtr4d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
| 124 | sqeqor | |- ( ( ( A ^c ( 1 / 2 ) ) e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) <-> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) ) |
|
| 125 | 119 14 124 | syl2anc | |- ( A e. CC -> ( ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) <-> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) ) |
| 126 | 125 | biimpa | |- ( ( A e. CC /\ ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) -> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) |
| 127 | 123 126 | syldan | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) |
| 128 | 127 | ord | |- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) -> ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) |
| 129 | 128 | con1d | |- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
| 130 | 111 129 | pm2.61d | |- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
| 131 | 130 | ex | |- ( A e. CC -> ( A =/= 0 -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
| 132 | 12 131 | pm2.61dne | |- ( A e. CC -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |