This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 8-Apr-2001) (Proof shortened by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sq11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 3 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 5 | simpl | |- ( ( B e. RR /\ 0 <_ B ) -> B e. RR ) |
|
| 6 | 5 | recnd | |- ( ( B e. RR /\ 0 <_ B ) -> B e. CC ) |
| 7 | sqval | |- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
|
| 8 | 6 7 | syl | |- ( ( B e. RR /\ 0 <_ B ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 9 | 4 8 | eqeqan12d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A x. A ) = ( B x. B ) ) ) |
| 10 | msq11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) ) |
|
| 11 | 9 10 | bitrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |