This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logsqrt | |- ( A e. RR+ -> ( log ` ( sqrt ` A ) ) = ( ( log ` A ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 3 | 2cn | |- 2 e. CC |
|
| 4 | 2ne0 | |- 2 =/= 0 |
|
| 5 | divrec2 | |- ( ( ( log ` A ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( log ` A ) / 2 ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
|
| 6 | 3 4 5 | mp3an23 | |- ( ( log ` A ) e. CC -> ( ( log ` A ) / 2 ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
| 7 | 2 6 | syl | |- ( A e. RR+ -> ( ( log ` A ) / 2 ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
| 8 | halfre | |- ( 1 / 2 ) e. RR |
|
| 9 | logcxp | |- ( ( A e. RR+ /\ ( 1 / 2 ) e. RR ) -> ( log ` ( A ^c ( 1 / 2 ) ) ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
|
| 10 | 8 9 | mpan2 | |- ( A e. RR+ -> ( log ` ( A ^c ( 1 / 2 ) ) ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
| 11 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 12 | cxpsqrt | |- ( A e. CC -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
|
| 13 | 11 12 | syl | |- ( A e. RR+ -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
| 14 | 13 | fveq2d | |- ( A e. RR+ -> ( log ` ( A ^c ( 1 / 2 ) ) ) = ( log ` ( sqrt ` A ) ) ) |
| 15 | 7 10 14 | 3eqtr2rd | |- ( A e. RR+ -> ( log ` ( sqrt ` A ) ) = ( ( log ` A ) / 2 ) ) |