This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpcxpcl | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprege0 | |- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
|
| 2 | recxpcl | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) |
|
| 3 | 2 | 3expa | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR ) -> ( A ^c B ) e. RR ) |
| 4 | 1 3 | sylan | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR ) |
| 5 | id | |- ( B e. RR -> B e. RR ) |
|
| 6 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 7 | remulcl | |- ( ( B e. RR /\ ( log ` A ) e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( A e. RR+ /\ B e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
| 9 | efgt0 | |- ( ( B x. ( log ` A ) ) e. RR -> 0 < ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. RR+ /\ B e. RR ) -> 0 < ( exp ` ( B x. ( log ` A ) ) ) ) |
| 11 | rpcnne0 | |- ( A e. RR+ -> ( A e. CC /\ A =/= 0 ) ) |
|
| 12 | recn | |- ( B e. RR -> B e. CC ) |
|
| 13 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 14 | 13 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 15 | 11 12 14 | syl2an | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 16 | 10 15 | breqtrrd | |- ( ( A e. RR+ /\ B e. RR ) -> 0 < ( A ^c B ) ) |
| 17 | 4 16 | elrpd | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |