This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of Gleason p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqeqor | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A ^ 2 ) = ( if ( A e. CC , A , 0 ) ^ 2 ) ) |
|
| 2 | 1 | eqeq1d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) ) ) |
| 3 | eqeq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A = B <-> if ( A e. CC , A , 0 ) = B ) ) |
|
| 4 | eqeq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A = -u B <-> if ( A e. CC , A , 0 ) = -u B ) ) |
|
| 5 | 3 4 | orbi12d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( A = B \/ A = -u B ) <-> ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) ) ) |
| 6 | 2 5 | bibi12d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) <-> ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) ) ) ) |
| 7 | oveq1 | |- ( B = if ( B e. CC , B , 0 ) -> ( B ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) ) |
|
| 8 | 7 | eqeq2d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) ) ) |
| 9 | eqeq2 | |- ( B = if ( B e. CC , B , 0 ) -> ( if ( A e. CC , A , 0 ) = B <-> if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) ) ) |
|
| 10 | negeq | |- ( B = if ( B e. CC , B , 0 ) -> -u B = -u if ( B e. CC , B , 0 ) ) |
|
| 11 | 10 | eqeq2d | |- ( B = if ( B e. CC , B , 0 ) -> ( if ( A e. CC , A , 0 ) = -u B <-> if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) |
| 12 | 9 11 | orbi12d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) <-> ( if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) \/ if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) ) |
| 13 | 8 12 | bibi12d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) ) <-> ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) \/ if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) ) ) |
| 14 | 0cn | |- 0 e. CC |
|
| 15 | 14 | elimel | |- if ( A e. CC , A , 0 ) e. CC |
| 16 | 14 | elimel | |- if ( B e. CC , B , 0 ) e. CC |
| 17 | 15 16 | sqeqori | |- ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) \/ if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) |
| 18 | 6 13 17 | dedth2h | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |