This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other n -th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpsqrt | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 2 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 3 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 4 | 2 3 | gt0ne0ii | ⊢ ( 1 / 2 ) ≠ 0 |
| 5 | 0cxp | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ≠ 0 ) → ( 0 ↑𝑐 ( 1 / 2 ) ) = 0 ) | |
| 6 | 1 4 5 | mp2an | ⊢ ( 0 ↑𝑐 ( 1 / 2 ) ) = 0 |
| 7 | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 | |
| 8 | 6 7 | eqtr4i | ⊢ ( 0 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 0 ) |
| 9 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( 0 ↑𝑐 ( 1 / 2 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝐴 = 0 → ( √ ‘ 𝐴 ) = ( √ ‘ 0 ) ) | |
| 11 | 8 9 10 | 3eqtr4a | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
| 12 | 11 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
| 13 | ax-icn | ⊢ i ∈ ℂ | |
| 14 | sqrtcl | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 16 | sqmul | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 18 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 19 | 18 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i ↑ 2 ) = - 1 ) |
| 20 | sqrtth | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 22 | 19 21 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( - 1 · 𝐴 ) ) |
| 23 | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) | |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 25 | 17 22 24 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ) |
| 26 | cxpsqrtlem | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 27 | 26 | resqcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
| 28 | 25 27 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ∈ ℝ ) |
| 29 | negeq0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) ) | |
| 30 | 29 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) ) |
| 31 | 30 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - 𝐴 ≠ 0 ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ≠ 0 ) |
| 33 | 25 32 | eqnetrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ≠ 0 ) |
| 34 | sq0i | ⊢ ( ( i · ( √ ‘ 𝐴 ) ) = 0 → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = 0 ) | |
| 35 | 34 | necon3i | ⊢ ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ≠ 0 → ( i · ( √ ‘ 𝐴 ) ) ≠ 0 ) |
| 36 | 33 35 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ≠ 0 ) |
| 37 | 26 36 | sqgt0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 < ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ) |
| 38 | 37 25 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 < - 𝐴 ) |
| 39 | 28 38 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ∈ ℝ+ ) |
| 40 | logneg | ⊢ ( - 𝐴 ∈ ℝ+ → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) |
| 42 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - - 𝐴 = 𝐴 ) |
| 44 | 43 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - - 𝐴 ) = ( log ‘ 𝐴 ) ) |
| 45 | 39 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) ∈ ℝ ) |
| 46 | 45 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) ∈ ℂ ) |
| 47 | picn | ⊢ π ∈ ℂ | |
| 48 | 13 47 | mulcli | ⊢ ( i · π ) ∈ ℂ |
| 49 | addcom | ⊢ ( ( ( log ‘ - 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ - 𝐴 ) + ( i · π ) ) = ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) | |
| 50 | 46 48 49 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( log ‘ - 𝐴 ) + ( i · π ) ) = ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) |
| 51 | 41 44 50 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) = ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) = ( ( 1 / 2 ) · ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) ) |
| 53 | adddi | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ∧ ( log ‘ - 𝐴 ) ∈ ℂ ) → ( ( 1 / 2 ) · ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) = ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) | |
| 54 | 1 48 46 53 | mp3an12i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) = ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) = ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
| 56 | 2cn | ⊢ 2 ∈ ℂ | |
| 57 | 2ne0 | ⊢ 2 ≠ 0 | |
| 58 | divrec2 | ⊢ ( ( ( i · π ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( i · π ) / 2 ) = ( ( 1 / 2 ) · ( i · π ) ) ) | |
| 59 | 48 56 57 58 | mp3an | ⊢ ( ( i · π ) / 2 ) = ( ( 1 / 2 ) · ( i · π ) ) |
| 60 | 13 47 56 57 | divassi | ⊢ ( ( i · π ) / 2 ) = ( i · ( π / 2 ) ) |
| 61 | 59 60 | eqtr3i | ⊢ ( ( 1 / 2 ) · ( i · π ) ) = ( i · ( π / 2 ) ) |
| 62 | 61 | oveq1i | ⊢ ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) = ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) |
| 63 | 55 62 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) = ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) ) |
| 65 | 47 56 57 | divcli | ⊢ ( π / 2 ) ∈ ℂ |
| 66 | 13 65 | mulcli | ⊢ ( i · ( π / 2 ) ) ∈ ℂ |
| 67 | mulcl | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( log ‘ - 𝐴 ) ∈ ℂ ) → ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ∈ ℂ ) | |
| 68 | 1 46 67 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ∈ ℂ ) |
| 69 | efadd | ⊢ ( ( ( i · ( π / 2 ) ) ∈ ℂ ∧ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) = ( ( exp ‘ ( i · ( π / 2 ) ) ) · ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) ) | |
| 70 | 66 68 69 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) = ( ( exp ‘ ( i · ( π / 2 ) ) ) · ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) ) |
| 71 | efhalfpi | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i | |
| 72 | 71 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( π / 2 ) ) ) = i ) |
| 73 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ∈ ℂ ) |
| 75 | 1 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 1 / 2 ) ∈ ℂ ) |
| 76 | cxpef | ⊢ ( ( - 𝐴 ∈ ℂ ∧ - 𝐴 ≠ 0 ∧ ( 1 / 2 ) ∈ ℂ ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) | |
| 77 | 74 32 75 76 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
| 78 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 79 | 2halves | ⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) | |
| 80 | 78 79 | ax-mp | ⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 81 | 80 | oveq2i | ⊢ ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( - 𝐴 ↑𝑐 1 ) |
| 82 | cxp1 | ⊢ ( - 𝐴 ∈ ℂ → ( - 𝐴 ↑𝑐 1 ) = - 𝐴 ) | |
| 83 | 74 82 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 1 ) = - 𝐴 ) |
| 84 | 81 83 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = - 𝐴 ) |
| 85 | rpcxpcl | ⊢ ( ( - 𝐴 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ+ ) | |
| 86 | 39 2 85 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ+ ) |
| 87 | 86 | rpcnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ) |
| 88 | 87 | sqvald | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 89 | cxpadd | ⊢ ( ( ( - 𝐴 ∈ ℂ ∧ - 𝐴 ≠ 0 ) ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) | |
| 90 | 74 32 75 75 89 | syl211anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 91 | 88 90 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 92 | 74 | sqsqrtd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( √ ‘ - 𝐴 ) ↑ 2 ) = - 𝐴 ) |
| 93 | 84 91 92 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ - 𝐴 ) ↑ 2 ) ) |
| 94 | 86 | rprege0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ ∧ 0 ≤ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 95 | 39 | rpsqrtcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ - 𝐴 ) ∈ ℝ+ ) |
| 96 | 95 | rprege0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( √ ‘ - 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ - 𝐴 ) ) ) |
| 97 | sq11 | ⊢ ( ( ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ ∧ 0 ≤ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ∧ ( ( √ ‘ - 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ - 𝐴 ) ) ) → ( ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ - 𝐴 ) ↑ 2 ) ↔ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ - 𝐴 ) ) ) | |
| 98 | 94 96 97 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ - 𝐴 ) ↑ 2 ) ↔ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ - 𝐴 ) ) ) |
| 99 | 93 98 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ - 𝐴 ) ) |
| 100 | 77 99 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) = ( √ ‘ - 𝐴 ) ) |
| 101 | 72 100 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( exp ‘ ( i · ( π / 2 ) ) ) · ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
| 102 | 64 70 101 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
| 103 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) | |
| 104 | 1 103 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) |
| 105 | 104 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) |
| 106 | 43 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ - - 𝐴 ) = ( √ ‘ 𝐴 ) ) |
| 107 | 39 | rpge0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 ≤ - 𝐴 ) |
| 108 | 28 107 | sqrtnegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ - - 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
| 109 | 106 108 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
| 110 | 102 105 109 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
| 111 | 110 | ex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
| 112 | 80 | oveq2i | ⊢ ( 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 𝐴 ↑𝑐 1 ) |
| 113 | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) | |
| 114 | 1 1 113 | mp3an23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 115 | cxp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) | |
| 116 | 115 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
| 117 | 112 114 116 | 3eqtr3a | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = 𝐴 ) |
| 118 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ) | |
| 119 | 1 118 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ) |
| 120 | 119 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 121 | 120 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 122 | 20 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 123 | 117 121 122 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
| 124 | sqeqor | ⊢ ( ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) ) | |
| 125 | 119 14 124 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) ) |
| 126 | 125 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) |
| 127 | 123 126 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) |
| 128 | 127 | ord | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) |
| 129 | 128 | con1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
| 130 | 111 129 | pm2.61d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
| 131 | 130 | ex | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
| 132 | 12 131 | pm2.61dne | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |