This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpadd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( ( A ^c B ) x. ( A ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 2 | simp3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 3 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( log ` A ) e. CC ) |
| 5 | 1 2 4 | adddird | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( B + C ) x. ( log ` A ) ) = ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) |
| 6 | 5 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B + C ) x. ( log ` A ) ) ) = ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) ) |
| 7 | 1 4 | mulcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
| 8 | 2 4 | mulcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( C x. ( log ` A ) ) e. CC ) |
| 9 | efadd | |- ( ( ( B x. ( log ` A ) ) e. CC /\ ( C x. ( log ` A ) ) e. CC ) -> ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 11 | 6 10 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B + C ) x. ( log ` A ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 12 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 13 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A =/= 0 ) |
|
| 14 | addcl | |- ( ( B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
|
| 15 | 14 | 3adant1 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
| 16 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ ( B + C ) e. CC ) -> ( A ^c ( B + C ) ) = ( exp ` ( ( B + C ) x. ( log ` A ) ) ) ) |
|
| 17 | 12 13 15 16 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( exp ` ( ( B + C ) x. ( log ` A ) ) ) ) |
| 18 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 19 | 12 13 1 18 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 20 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
|
| 21 | 12 13 2 20 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 22 | 19 21 | oveq12d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( A ^c B ) x. ( A ^c C ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 23 | 11 17 22 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( ( A ^c B ) x. ( A ^c C ) ) ) |