This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cxpsqrt . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpsqrtlem | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | sqrtcl | |- ( A e. CC -> ( sqrt ` A ) e. CC ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) e. CC ) |
| 4 | mulcl | |- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
|
| 5 | 1 3 4 | sylancr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
| 6 | imval | |- ( ( _i x. ( sqrt ` A ) ) e. CC -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) ) |
| 8 | ine0 | |- _i =/= 0 |
|
| 9 | divcan3 | |- ( ( ( sqrt ` A ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) |
|
| 10 | 1 8 9 | mp3an23 | |- ( ( sqrt ` A ) e. CC -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) |
| 11 | 3 10 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) |
| 12 | 11 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) = ( Re ` ( sqrt ` A ) ) ) |
| 13 | halfre | |- ( 1 / 2 ) e. RR |
|
| 14 | 13 | recni | |- ( 1 / 2 ) e. CC |
| 15 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 16 | mulcl | |- ( ( ( 1 / 2 ) e. CC /\ ( log ` A ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` A ) ) e. CC ) |
|
| 17 | 14 15 16 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / 2 ) x. ( log ` A ) ) e. CC ) |
| 18 | 17 | recld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. RR ) |
| 19 | 18 | reefcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) |
| 20 | 17 | imcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. RR ) |
| 21 | 20 | recoscld | |- ( ( A e. CC /\ A =/= 0 ) -> ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) |
| 22 | 18 | rpefcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR+ ) |
| 23 | 22 | rpge0d | |- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 24 | immul2 | |- ( ( ( 1 / 2 ) e. RR /\ ( log ` A ) e. CC ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) ) |
|
| 25 | 13 15 24 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) ) |
| 26 | 15 | imcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 27 | 26 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 28 | mulcom | |- ( ( ( 1 / 2 ) e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) |
|
| 29 | 14 27 28 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) |
| 30 | 25 29 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) |
| 31 | logimcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
|
| 32 | 31 | simpld | |- ( ( A e. CC /\ A =/= 0 ) -> -u _pi < ( Im ` ( log ` A ) ) ) |
| 33 | pire | |- _pi e. RR |
|
| 34 | 33 | renegcli | |- -u _pi e. RR |
| 35 | ltle | |- ( ( -u _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( -u _pi < ( Im ` ( log ` A ) ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) ) |
|
| 36 | 34 26 35 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) ) |
| 37 | 32 36 | mpd | |- ( ( A e. CC /\ A =/= 0 ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) |
| 38 | 31 | simprd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) <_ _pi ) |
| 39 | 34 33 | elicc2i | |- ( ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) <-> ( ( Im ` ( log ` A ) ) e. RR /\ -u _pi <_ ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
| 40 | 26 37 38 39 | syl3anbrc | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) ) |
| 41 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
| 42 | 13 41 | elrpii | |- ( 1 / 2 ) e. RR+ |
| 43 | 33 | recni | |- _pi e. CC |
| 44 | 2cn | |- 2 e. CC |
|
| 45 | 2ne0 | |- 2 =/= 0 |
|
| 46 | divneg | |- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) |
|
| 47 | 43 44 45 46 | mp3an | |- -u ( _pi / 2 ) = ( -u _pi / 2 ) |
| 48 | 34 | recni | |- -u _pi e. CC |
| 49 | 48 44 45 | divreci | |- ( -u _pi / 2 ) = ( -u _pi x. ( 1 / 2 ) ) |
| 50 | 47 49 | eqtr2i | |- ( -u _pi x. ( 1 / 2 ) ) = -u ( _pi / 2 ) |
| 51 | 43 44 45 | divreci | |- ( _pi / 2 ) = ( _pi x. ( 1 / 2 ) ) |
| 52 | 51 | eqcomi | |- ( _pi x. ( 1 / 2 ) ) = ( _pi / 2 ) |
| 53 | 34 33 42 50 52 | iccdili | |- ( ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) -> ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 54 | 40 53 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 55 | 30 54 | eqeltrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 56 | cosq14ge0 | |- ( ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 58 | 19 21 23 57 | mulge0d | |- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) |
| 59 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
|
| 60 | 14 59 | mp3an3 | |- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
| 61 | efeul | |- ( ( ( 1 / 2 ) x. ( log ` A ) ) e. CC -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) |
|
| 62 | 17 61 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) |
| 63 | 60 62 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) |
| 64 | 63 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( Re ` ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) ) |
| 65 | 21 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) |
| 66 | 20 | resincld | |- ( ( A e. CC /\ A =/= 0 ) -> ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) |
| 67 | 66 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) |
| 68 | mulcl | |- ( ( _i e. CC /\ ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) -> ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) e. CC ) |
|
| 69 | 1 67 68 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) e. CC ) |
| 70 | 65 69 | addcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) e. CC ) |
| 71 | 19 70 | remul2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) ) |
| 72 | 21 66 | crred | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) = ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 73 | 72 | oveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) |
| 74 | 64 71 73 | 3eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) |
| 75 | 58 74 | breqtrrd | |- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( Re ` ( A ^c ( 1 / 2 ) ) ) ) |
| 76 | 75 | adantr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ ( Re ` ( A ^c ( 1 / 2 ) ) ) ) |
| 77 | simpr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) |
|
| 78 | 77 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( Re ` -u ( sqrt ` A ) ) ) |
| 79 | 3 | renegd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` -u ( sqrt ` A ) ) = -u ( Re ` ( sqrt ` A ) ) ) |
| 80 | 78 79 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = -u ( Re ` ( sqrt ` A ) ) ) |
| 81 | 76 80 | breqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ -u ( Re ` ( sqrt ` A ) ) ) |
| 82 | 3 | recld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) e. RR ) |
| 83 | 82 | le0neg1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( Re ` ( sqrt ` A ) ) <_ 0 <-> 0 <_ -u ( Re ` ( sqrt ` A ) ) ) ) |
| 84 | 81 83 | mpbird | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) <_ 0 ) |
| 85 | sqrtrege0 | |- ( A e. CC -> 0 <_ ( Re ` ( sqrt ` A ) ) ) |
|
| 86 | 85 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ ( Re ` ( sqrt ` A ) ) ) |
| 87 | 0re | |- 0 e. RR |
|
| 88 | letri3 | |- ( ( ( Re ` ( sqrt ` A ) ) e. RR /\ 0 e. RR ) -> ( ( Re ` ( sqrt ` A ) ) = 0 <-> ( ( Re ` ( sqrt ` A ) ) <_ 0 /\ 0 <_ ( Re ` ( sqrt ` A ) ) ) ) ) |
|
| 89 | 82 87 88 | sylancl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( Re ` ( sqrt ` A ) ) = 0 <-> ( ( Re ` ( sqrt ` A ) ) <_ 0 /\ 0 <_ ( Re ` ( sqrt ` A ) ) ) ) ) |
| 90 | 84 86 89 | mpbir2and | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) = 0 ) |
| 91 | 7 12 90 | 3eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = 0 ) |
| 92 | 5 91 | reim0bd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. RR ) |