This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpval | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | 0cn | |- 0 e. CC |
|
| 4 | 2 3 | ifcli | |- if ( B = 0 , 1 , 0 ) e. CC |
| 5 | 4 | a1i | |- ( ( ( A e. CC /\ B e. CC ) /\ A = 0 ) -> if ( B = 0 , 1 , 0 ) e. CC ) |
| 6 | df-ne | |- ( A =/= 0 <-> -. A = 0 ) |
|
| 7 | id | |- ( B e. CC -> B e. CC ) |
|
| 8 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 9 | mulcl | |- ( ( B e. CC /\ ( log ` A ) e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
|
| 10 | 7 8 9 | syl2anr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
| 11 | 10 | an32s | |- ( ( ( A e. CC /\ B e. CC ) /\ A =/= 0 ) -> ( B x. ( log ` A ) ) e. CC ) |
| 12 | efcl | |- ( ( B x. ( log ` A ) ) e. CC -> ( exp ` ( B x. ( log ` A ) ) ) e. CC ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ A =/= 0 ) -> ( exp ` ( B x. ( log ` A ) ) ) e. CC ) |
| 14 | 6 13 | sylan2br | |- ( ( ( A e. CC /\ B e. CC ) /\ -. A = 0 ) -> ( exp ` ( B x. ( log ` A ) ) ) e. CC ) |
| 15 | 5 14 | ifclda | |- ( ( A e. CC /\ B e. CC ) -> if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) e. CC ) |
| 16 | 1 15 | eqeltrd | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |