This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of _ipi / 2 is i . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efhalfpi | |- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | halfcl | |- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
|
| 3 | efival | |- ( ( _pi / 2 ) e. CC -> ( exp ` ( _i x. ( _pi / 2 ) ) ) = ( ( cos ` ( _pi / 2 ) ) + ( _i x. ( sin ` ( _pi / 2 ) ) ) ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( exp ` ( _i x. ( _pi / 2 ) ) ) = ( ( cos ` ( _pi / 2 ) ) + ( _i x. ( sin ` ( _pi / 2 ) ) ) ) |
| 5 | coshalfpi | |- ( cos ` ( _pi / 2 ) ) = 0 |
|
| 6 | sinhalfpi | |- ( sin ` ( _pi / 2 ) ) = 1 |
|
| 7 | 6 | oveq2i | |- ( _i x. ( sin ` ( _pi / 2 ) ) ) = ( _i x. 1 ) |
| 8 | ax-icn | |- _i e. CC |
|
| 9 | 8 | mulridi | |- ( _i x. 1 ) = _i |
| 10 | 7 9 | eqtri | |- ( _i x. ( sin ` ( _pi / 2 ) ) ) = _i |
| 11 | 5 10 | oveq12i | |- ( ( cos ` ( _pi / 2 ) ) + ( _i x. ( sin ` ( _pi / 2 ) ) ) ) = ( 0 + _i ) |
| 12 | 8 | addlidi | |- ( 0 + _i ) = _i |
| 13 | 11 12 | eqtri | |- ( ( cos ` ( _pi / 2 ) ) + ( _i x. ( sin ` ( _pi / 2 ) ) ) ) = _i |
| 14 | 4 13 | eqtri | |- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |