This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpval | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 3 | simp2 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> A =/= 0 ) |
|
| 4 | 3 | neneqd | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> -. A = 0 ) |
| 5 | 4 | iffalsed | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 6 | 2 5 | eqtrd | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |