This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two halves make a whole. (Contributed by NM, 11-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2halves | |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times | |- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
|
| 2 | 1 | oveq1d | |- ( A e. CC -> ( ( 2 x. A ) / 2 ) = ( ( A + A ) / 2 ) ) |
| 3 | 2cn | |- 2 e. CC |
|
| 4 | 2ne0 | |- 2 =/= 0 |
|
| 5 | divcan3 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
|
| 6 | 3 4 5 | mp3an23 | |- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
| 7 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 8 | divdir | |- ( ( A e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( A + A ) / 2 ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
|
| 9 | 7 8 | mp3an3 | |- ( ( A e. CC /\ A e. CC ) -> ( ( A + A ) / 2 ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
| 10 | 9 | anidms | |- ( A e. CC -> ( ( A + A ) / 2 ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
| 11 | 2 6 10 | 3eqtr3rd | |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |