This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtcl | |- ( A e. CC -> ( sqrt ` A ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtval | |- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 2 | sqreu | |- ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 3 | riotacl | |- ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) e. CC ) |
|
| 4 | 2 3 | syl | |- ( A e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) e. CC ) |
| 5 | 1 4 | eqeltrd | |- ( A e. CC -> ( sqrt ` A ) e. CC ) |