This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014) (Revised by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logneg | |- ( A e. RR+ -> ( log ` -u A ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | picn | |- _pi e. CC |
|
| 5 | 3 4 | mulcli | |- ( _i x. _pi ) e. CC |
| 6 | efadd | |- ( ( ( log ` A ) e. CC /\ ( _i x. _pi ) e. CC ) -> ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) ) |
|
| 7 | 2 5 6 | sylancl | |- ( A e. RR+ -> ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) ) |
| 8 | efipi | |- ( exp ` ( _i x. _pi ) ) = -u 1 |
|
| 9 | 8 | oveq2i | |- ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) = ( ( exp ` ( log ` A ) ) x. -u 1 ) |
| 10 | reeflog | |- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
|
| 11 | 10 | oveq1d | |- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) x. -u 1 ) = ( A x. -u 1 ) ) |
| 12 | 9 11 | eqtrid | |- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) = ( A x. -u 1 ) ) |
| 13 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 14 | neg1cn | |- -u 1 e. CC |
|
| 15 | mulcom | |- ( ( A e. CC /\ -u 1 e. CC ) -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
|
| 16 | 13 14 15 | sylancl | |- ( A e. RR+ -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
| 17 | 13 | mulm1d | |- ( A e. RR+ -> ( -u 1 x. A ) = -u A ) |
| 18 | 16 17 | eqtrd | |- ( A e. RR+ -> ( A x. -u 1 ) = -u A ) |
| 19 | 7 12 18 | 3eqtrd | |- ( A e. RR+ -> ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) = -u A ) |
| 20 | 19 | fveq2d | |- ( A e. RR+ -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) = ( log ` -u A ) ) |
| 21 | addcl | |- ( ( ( log ` A ) e. CC /\ ( _i x. _pi ) e. CC ) -> ( ( log ` A ) + ( _i x. _pi ) ) e. CC ) |
|
| 22 | 2 5 21 | sylancl | |- ( A e. RR+ -> ( ( log ` A ) + ( _i x. _pi ) ) e. CC ) |
| 23 | pipos | |- 0 < _pi |
|
| 24 | pire | |- _pi e. RR |
|
| 25 | lt0neg2 | |- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
|
| 26 | 24 25 | ax-mp | |- ( 0 < _pi <-> -u _pi < 0 ) |
| 27 | 23 26 | mpbi | |- -u _pi < 0 |
| 28 | 24 | renegcli | |- -u _pi e. RR |
| 29 | 0re | |- 0 e. RR |
|
| 30 | 28 29 24 | lttri | |- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
| 31 | 27 23 30 | mp2an | |- -u _pi < _pi |
| 32 | crim | |- ( ( ( log ` A ) e. RR /\ _pi e. RR ) -> ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) = _pi ) |
|
| 33 | 1 24 32 | sylancl | |- ( A e. RR+ -> ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) = _pi ) |
| 34 | 31 33 | breqtrrid | |- ( A e. RR+ -> -u _pi < ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) |
| 35 | 24 | leidi | |- _pi <_ _pi |
| 36 | 33 35 | eqbrtrdi | |- ( A e. RR+ -> ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) <_ _pi ) |
| 37 | ellogrn | |- ( ( ( log ` A ) + ( _i x. _pi ) ) e. ran log <-> ( ( ( log ` A ) + ( _i x. _pi ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) /\ ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) <_ _pi ) ) |
|
| 38 | 22 34 36 37 | syl3anbrc | |- ( A e. RR+ -> ( ( log ` A ) + ( _i x. _pi ) ) e. ran log ) |
| 39 | logef | |- ( ( ( log ` A ) + ( _i x. _pi ) ) e. ran log -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |
|
| 40 | 38 39 | syl | |- ( A e. RR+ -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |
| 41 | 20 40 | eqtr3d | |- ( A e. RR+ -> ( log ` -u A ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |