This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cxp | |- ( ( A e. CC /\ A =/= 0 ) -> ( 0 ^c A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | cxpval | |- ( ( 0 e. CC /\ A e. CC ) -> ( 0 ^c A ) = if ( 0 = 0 , if ( A = 0 , 1 , 0 ) , ( exp ` ( A x. ( log ` 0 ) ) ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( 0 ^c A ) = if ( 0 = 0 , if ( A = 0 , 1 , 0 ) , ( exp ` ( A x. ( log ` 0 ) ) ) ) ) |
| 4 | eqid | |- 0 = 0 |
|
| 5 | 4 | iftruei | |- if ( 0 = 0 , if ( A = 0 , 1 , 0 ) , ( exp ` ( A x. ( log ` 0 ) ) ) ) = if ( A = 0 , 1 , 0 ) |
| 6 | 3 5 | eqtrdi | |- ( A e. CC -> ( 0 ^c A ) = if ( A = 0 , 1 , 0 ) ) |
| 7 | ifnefalse | |- ( A =/= 0 -> if ( A = 0 , 1 , 0 ) = 0 ) |
|
| 8 | 6 7 | sylan9eq | |- ( ( A e. CC /\ A =/= 0 ) -> ( 0 ^c A ) = 0 ) |