This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
||
| 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
||
| 4sq.7 | |- M = inf ( T , RR , < ) |
||
| Assertion | 4sqlem13 | |- ( ph -> ( T =/= (/) /\ M < P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
|
| 6 | 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
|
| 7 | 4sq.7 | |- M = inf ( T , RR , < ) |
|
| 8 | eqid | |- { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
|
| 9 | eqid | |- ( v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |-> ( ( P - 1 ) - v ) ) = ( v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |-> ( ( P - 1 ) - v ) ) |
|
| 10 | 1 2 3 4 8 9 | 4sqlem12 | |- ( ph -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 11 | simplrl | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. ( 1 ... ( P - 1 ) ) ) |
|
| 12 | elfznn | |- ( k e. ( 1 ... ( P - 1 ) ) -> k e. NN ) |
|
| 13 | 11 12 | syl | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. NN ) |
| 14 | simpr | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
|
| 15 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 16 | 15 | oveq1i | |- ( ( abs ` 1 ) ^ 2 ) = ( 1 ^ 2 ) |
| 17 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 18 | 16 17 | eqtri | |- ( ( abs ` 1 ) ^ 2 ) = 1 |
| 19 | 18 | oveq2i | |- ( ( ( abs ` u ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) = ( ( ( abs ` u ) ^ 2 ) + 1 ) |
| 20 | simplrr | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> u e. Z[i] ) |
|
| 21 | 1z | |- 1 e. ZZ |
|
| 22 | zgz | |- ( 1 e. ZZ -> 1 e. Z[i] ) |
|
| 23 | 21 22 | ax-mp | |- 1 e. Z[i] |
| 24 | 1 | 4sqlem4a | |- ( ( u e. Z[i] /\ 1 e. Z[i] ) -> ( ( ( abs ` u ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S ) |
| 25 | 20 23 24 | sylancl | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( ( ( abs ` u ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S ) |
| 26 | 19 25 | eqeltrrid | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) e. S ) |
| 27 | 14 26 | eqeltrrd | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( k x. P ) e. S ) |
| 28 | oveq1 | |- ( i = k -> ( i x. P ) = ( k x. P ) ) |
|
| 29 | 28 | eleq1d | |- ( i = k -> ( ( i x. P ) e. S <-> ( k x. P ) e. S ) ) |
| 30 | 29 6 | elrab2 | |- ( k e. T <-> ( k e. NN /\ ( k x. P ) e. S ) ) |
| 31 | 13 27 30 | sylanbrc | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. T ) |
| 32 | 31 | ne0d | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> T =/= (/) ) |
| 33 | 6 | ssrab3 | |- T C_ NN |
| 34 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 35 | 33 34 | sseqtri | |- T C_ ( ZZ>= ` 1 ) |
| 36 | infssuzcl | |- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
|
| 37 | 35 32 36 | sylancr | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> inf ( T , RR , < ) e. T ) |
| 38 | 7 37 | eqeltrid | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M e. T ) |
| 39 | 33 38 | sselid | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M e. NN ) |
| 40 | 39 | nnred | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M e. RR ) |
| 41 | 13 | nnred | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. RR ) |
| 42 | 4 | ad2antrr | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. Prime ) |
| 43 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 44 | 42 43 | syl | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. NN ) |
| 45 | 44 | nnred | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. RR ) |
| 46 | infssuzle | |- ( ( T C_ ( ZZ>= ` 1 ) /\ k e. T ) -> inf ( T , RR , < ) <_ k ) |
|
| 47 | 35 31 46 | sylancr | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> inf ( T , RR , < ) <_ k ) |
| 48 | 7 47 | eqbrtrid | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M <_ k ) |
| 49 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 50 | 42 49 | syl | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. ZZ ) |
| 51 | elfzm11 | |- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( k e. ( 1 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < P ) ) ) |
|
| 52 | 21 50 51 | sylancr | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( k e. ( 1 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < P ) ) ) |
| 53 | 11 52 | mpbid | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < P ) ) |
| 54 | 53 | simp3d | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k < P ) |
| 55 | 40 41 45 48 54 | lelttrd | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M < P ) |
| 56 | 32 55 | jca | |- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( T =/= (/) /\ M < P ) ) |
| 57 | 56 | ex | |- ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) -> ( T =/= (/) /\ M < P ) ) ) |
| 58 | 57 | rexlimdvva | |- ( ph -> ( E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) -> ( T =/= (/) /\ M < P ) ) ) |
| 59 | 10 58 | mpd | |- ( ph -> ( T =/= (/) /\ M < P ) ) |