This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) Reduce axiom usage. (Revised by GG, 2-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| Assertion | rexab | |- ( E. x e. { y | ph } ch <-> E. x ( ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| 2 | dfrex2 | |- ( E. x e. { y | ph } ch <-> -. A. x e. { y | ph } -. ch ) |
|
| 3 | 1 | ralab | |- ( A. x e. { y | ph } -. ch <-> A. x ( ps -> -. ch ) ) |
| 4 | 2 3 | xchbinx | |- ( E. x e. { y | ph } ch <-> -. A. x ( ps -> -. ch ) ) |
| 5 | imnang | |- ( A. x ( ps -> -. ch ) <-> A. x -. ( ps /\ ch ) ) |
|
| 6 | 4 5 | xchbinx | |- ( E. x e. { y | ph } ch <-> -. A. x -. ( ps /\ ch ) ) |
| 7 | df-ex | |- ( E. x ( ps /\ ch ) <-> -. A. x -. ( ps /\ ch ) ) |
|
| 8 | 6 7 | bitr4i | |- ( E. x e. { y | ph } ch <-> E. x ( ps /\ ch ) ) |