This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modsubdir | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) <_ ( A mod C ) <-> ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | |- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. RR ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) e. RR ) |
| 3 | modcl | |- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. RR ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) e. RR ) |
| 5 | 2 4 | subge0d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( 0 <_ ( ( A mod C ) - ( B mod C ) ) <-> ( B mod C ) <_ ( A mod C ) ) ) |
| 6 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 7 | 6 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A - B ) e. RR ) |
| 8 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> C e. RR+ ) |
|
| 9 | rerpdivcl | |- ( ( A e. RR /\ C e. RR+ ) -> ( A / C ) e. RR ) |
|
| 10 | 9 | flcld | |- ( ( A e. RR /\ C e. RR+ ) -> ( |_ ` ( A / C ) ) e. ZZ ) |
| 11 | 10 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( |_ ` ( A / C ) ) e. ZZ ) |
| 12 | rerpdivcl | |- ( ( B e. RR /\ C e. RR+ ) -> ( B / C ) e. RR ) |
|
| 13 | 12 | flcld | |- ( ( B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. ZZ ) |
| 14 | 13 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. ZZ ) |
| 15 | 11 14 | zsubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) e. ZZ ) |
| 16 | modcyc2 | |- ( ( ( A - B ) e. RR /\ C e. RR+ /\ ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) e. ZZ ) -> ( ( ( A - B ) - ( C x. ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) ) ) mod C ) = ( ( A - B ) mod C ) ) |
|
| 17 | 7 8 15 16 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A - B ) - ( C x. ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) ) ) mod C ) = ( ( A - B ) mod C ) ) |
| 18 | recn | |- ( A e. RR -> A e. CC ) |
|
| 19 | 18 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> A e. CC ) |
| 20 | recn | |- ( B e. RR -> B e. CC ) |
|
| 21 | 20 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> B e. CC ) |
| 22 | rpre | |- ( C e. RR+ -> C e. RR ) |
|
| 23 | 22 | adantl | |- ( ( A e. RR /\ C e. RR+ ) -> C e. RR ) |
| 24 | refldivcl | |- ( ( A e. RR /\ C e. RR+ ) -> ( |_ ` ( A / C ) ) e. RR ) |
|
| 25 | 23 24 | remulcld | |- ( ( A e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( A / C ) ) ) e. RR ) |
| 26 | 25 | recnd | |- ( ( A e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( A / C ) ) ) e. CC ) |
| 27 | 26 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( A / C ) ) ) e. CC ) |
| 28 | 22 | adantl | |- ( ( B e. RR /\ C e. RR+ ) -> C e. RR ) |
| 29 | refldivcl | |- ( ( B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. RR ) |
|
| 30 | 28 29 | remulcld | |- ( ( B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( B / C ) ) ) e. RR ) |
| 31 | 30 | recnd | |- ( ( B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( B / C ) ) ) e. CC ) |
| 32 | 31 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( B / C ) ) ) e. CC ) |
| 33 | 19 21 27 32 | sub4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A - B ) - ( ( C x. ( |_ ` ( A / C ) ) ) - ( C x. ( |_ ` ( B / C ) ) ) ) ) = ( ( A - ( C x. ( |_ ` ( A / C ) ) ) ) - ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) ) |
| 34 | 22 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> C e. RR ) |
| 35 | 34 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> C e. CC ) |
| 36 | 24 | recnd | |- ( ( A e. RR /\ C e. RR+ ) -> ( |_ ` ( A / C ) ) e. CC ) |
| 37 | 36 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( |_ ` ( A / C ) ) e. CC ) |
| 38 | 29 | recnd | |- ( ( B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. CC ) |
| 39 | 38 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. CC ) |
| 40 | 35 37 39 | subdid | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( C x. ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) ) = ( ( C x. ( |_ ` ( A / C ) ) ) - ( C x. ( |_ ` ( B / C ) ) ) ) ) |
| 41 | 40 | oveq2d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A - B ) - ( C x. ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) ) ) = ( ( A - B ) - ( ( C x. ( |_ ` ( A / C ) ) ) - ( C x. ( |_ ` ( B / C ) ) ) ) ) ) |
| 42 | modval | |- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) = ( A - ( C x. ( |_ ` ( A / C ) ) ) ) ) |
|
| 43 | 42 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) = ( A - ( C x. ( |_ ` ( A / C ) ) ) ) ) |
| 44 | modval | |- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) = ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) |
|
| 45 | 44 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) = ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) |
| 46 | 43 45 | oveq12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) - ( B mod C ) ) = ( ( A - ( C x. ( |_ ` ( A / C ) ) ) ) - ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) ) |
| 47 | 33 41 46 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A - B ) - ( C x. ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) ) ) = ( ( A mod C ) - ( B mod C ) ) ) |
| 48 | 47 | oveq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A - B ) - ( C x. ( ( |_ ` ( A / C ) ) - ( |_ ` ( B / C ) ) ) ) ) mod C ) = ( ( ( A mod C ) - ( B mod C ) ) mod C ) ) |
| 49 | 17 48 | eqtr3d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A - B ) mod C ) = ( ( ( A mod C ) - ( B mod C ) ) mod C ) ) |
| 50 | 49 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> ( ( A - B ) mod C ) = ( ( ( A mod C ) - ( B mod C ) ) mod C ) ) |
| 51 | 2 4 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) - ( B mod C ) ) e. RR ) |
| 52 | 51 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> ( ( A mod C ) - ( B mod C ) ) e. RR ) |
| 53 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> C e. RR+ ) |
|
| 54 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> 0 <_ ( ( A mod C ) - ( B mod C ) ) ) |
|
| 55 | modge0 | |- ( ( B e. RR /\ C e. RR+ ) -> 0 <_ ( B mod C ) ) |
|
| 56 | 55 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> 0 <_ ( B mod C ) ) |
| 57 | 2 4 | subge02d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( 0 <_ ( B mod C ) <-> ( ( A mod C ) - ( B mod C ) ) <_ ( A mod C ) ) ) |
| 58 | 56 57 | mpbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) - ( B mod C ) ) <_ ( A mod C ) ) |
| 59 | modlt | |- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) < C ) |
|
| 60 | 59 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) < C ) |
| 61 | 51 2 34 58 60 | lelttrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) - ( B mod C ) ) < C ) |
| 62 | 61 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> ( ( A mod C ) - ( B mod C ) ) < C ) |
| 63 | modid | |- ( ( ( ( ( A mod C ) - ( B mod C ) ) e. RR /\ C e. RR+ ) /\ ( 0 <_ ( ( A mod C ) - ( B mod C ) ) /\ ( ( A mod C ) - ( B mod C ) ) < C ) ) -> ( ( ( A mod C ) - ( B mod C ) ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) |
|
| 64 | 52 53 54 62 63 | syl22anc | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> ( ( ( A mod C ) - ( B mod C ) ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) |
| 65 | 50 64 | eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ 0 <_ ( ( A mod C ) - ( B mod C ) ) ) -> ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) |
| 66 | modge0 | |- ( ( ( A - B ) e. RR /\ C e. RR+ ) -> 0 <_ ( ( A - B ) mod C ) ) |
|
| 67 | 6 66 | stoic3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> 0 <_ ( ( A - B ) mod C ) ) |
| 68 | 67 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) -> 0 <_ ( ( A - B ) mod C ) ) |
| 69 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) -> ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) |
|
| 70 | 68 69 | breqtrd | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR+ ) /\ ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) -> 0 <_ ( ( A mod C ) - ( B mod C ) ) ) |
| 71 | 65 70 | impbida | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( 0 <_ ( ( A mod C ) - ( B mod C ) ) <-> ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) ) |
| 72 | 5 71 | bitr3d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) <_ ( A mod C ) <-> ( ( A - B ) mod C ) = ( ( A mod C ) - ( B mod C ) ) ) ) |