This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version 19.41v . Version of r19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.41v | |- ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | |- ( E. x e. A ( ph /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 2 | anass | |- ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 3 | 2 | exbii | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) ) |
| 4 | 19.41v | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) ) |
|
| 5 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 6 | 5 | bicomi | |- ( E. x ( x e. A /\ ph ) <-> E. x e. A ph ) |
| 7 | 4 6 | bianbi | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> ( E. x e. A ph /\ ps ) ) |
| 8 | 1 3 7 | 3bitr2i | |- ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) ) |