This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| isdomn.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | isdomn.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 7 | fvexd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 0g ‘ 𝑟 ) ∈ V ) | |
| 8 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 10 | 9 3 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 11 | simplr | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵 ) | |
| 12 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 13 | 12 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 14 | 13 | oveqdr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 15 | id | ⊢ ( 𝑧 = 0 → 𝑧 = 0 ) | |
| 16 | 14 15 | eqeqan12d | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 · 𝑦 ) = 0 ) ) |
| 17 | eqeq2 | ⊢ ( 𝑧 = 0 → ( 𝑥 = 𝑧 ↔ 𝑥 = 0 ) ) | |
| 18 | eqeq2 | ⊢ ( 𝑧 = 0 → ( 𝑦 = 𝑧 ↔ 𝑦 = 0 ) ) | |
| 19 | 17 18 | orbi12d | ⊢ ( 𝑧 = 0 → ( ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ↔ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ↔ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
| 21 | 16 20 | imbi12d | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 22 | 11 21 | raleqbidv | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 23 | 11 22 | raleqbidv | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 24 | 7 10 23 | sbcied2 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 25 | 4 6 24 | sbcied2 | ⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 26 | df-domn | ⊢ Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } | |
| 27 | 25 26 | elrab2 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |