This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul1a . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) | |
| 3 | xrleloe | ⊢ ( ( 0 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 5 | simpllr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐶 ∈ ℝ* ) | |
| 6 | elxr | ⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) | |
| 7 | 5 6 | sylib | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
| 8 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ≤ 𝐵 ) | |
| 9 | simprll | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) | |
| 10 | simprlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 11 | simprr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) | |
| 12 | simplrl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 0 < 𝐶 ) | |
| 13 | lemul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) | |
| 14 | 9 10 11 12 13 | syl112anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 15 | 8 14 | mpbid | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) |
| 16 | rexmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐴 · 𝐶 ) ) | |
| 17 | 9 11 16 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ·e 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
| 18 | rexmul | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) | |
| 19 | 10 11 18 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 20 | 15 17 19 | 3brtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 21 | 20 | expr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ∈ ℝ → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 22 | simprl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) | |
| 23 | 0re | ⊢ 0 ∈ ℝ | |
| 24 | lttri4 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) | |
| 25 | 22 23 24 | sylancl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
| 26 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 27 | 26 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐴 ∈ ℝ* ) |
| 28 | xmulpnf1n | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) | |
| 29 | 27 28 | sylan | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |
| 30 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐵 ∈ ℝ* ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ* ) |
| 33 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 34 | xmulcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ·e +∞ ) ∈ ℝ* ) | |
| 35 | 32 33 34 | sylancl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → ( 𝐵 ·e +∞ ) ∈ ℝ* ) |
| 36 | mnfle | ⊢ ( ( 𝐵 ·e +∞ ) ∈ ℝ* → -∞ ≤ ( 𝐵 ·e +∞ ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → -∞ ≤ ( 𝐵 ·e +∞ ) ) |
| 38 | 29 37 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
| 39 | 38 | ex | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 0 → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
| 40 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ·e +∞ ) = ( 0 ·e +∞ ) ) | |
| 41 | xmul02 | ⊢ ( +∞ ∈ ℝ* → ( 0 ·e +∞ ) = 0 ) | |
| 42 | 33 41 | ax-mp | ⊢ ( 0 ·e +∞ ) = 0 |
| 43 | 40 42 | eqtrdi | ⊢ ( 𝐴 = 0 → ( 𝐴 ·e +∞ ) = 0 ) |
| 44 | 43 | adantl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → ( 𝐴 ·e +∞ ) = 0 ) |
| 45 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐴 ≤ 𝐵 ) | |
| 46 | breq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ≤ 𝐵 ↔ 0 ≤ 𝐵 ) ) | |
| 47 | 45 46 | syl5ibcom | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 0 → 0 ≤ 𝐵 ) ) |
| 48 | simprr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 49 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) | |
| 50 | 23 48 49 | sylancr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
| 51 | 47 50 | sylibd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 0 → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
| 52 | 51 | imp | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) |
| 53 | pnfge | ⊢ ( 0 ∈ ℝ* → 0 ≤ +∞ ) | |
| 54 | 1 53 | ax-mp | ⊢ 0 ≤ +∞ |
| 55 | xmulpnf1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( 𝐵 ·e +∞ ) = +∞ ) | |
| 56 | 31 55 | sylan | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 < 𝐵 ) → ( 𝐵 ·e +∞ ) = +∞ ) |
| 57 | 54 56 | breqtrrid | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 < 𝐵 ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
| 58 | xrleid | ⊢ ( 0 ∈ ℝ* → 0 ≤ 0 ) | |
| 59 | 1 58 | ax-mp | ⊢ 0 ≤ 0 |
| 60 | 59 42 | breqtrri | ⊢ 0 ≤ ( 0 ·e +∞ ) |
| 61 | simpr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 = 𝐵 ) → 0 = 𝐵 ) | |
| 62 | 61 | oveq1d | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 = 𝐵 ) → ( 0 ·e +∞ ) = ( 𝐵 ·e +∞ ) ) |
| 63 | 60 62 | breqtrid | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 = 𝐵 ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
| 64 | 57 63 | jaodan | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
| 65 | 52 64 | syldan | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
| 66 | 44 65 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
| 67 | 66 | ex | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 0 → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
| 68 | pnfge | ⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) | |
| 69 | 33 68 | ax-mp | ⊢ +∞ ≤ +∞ |
| 70 | 26 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ* ) |
| 71 | simprr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) | |
| 72 | xmulpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) | |
| 73 | 70 71 72 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| 74 | 30 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 𝐵 ∈ ℝ* ) |
| 75 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) | |
| 76 | 23 75 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) |
| 78 | 45 77 | mpan2d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 0 < 𝐴 → 0 < 𝐵 ) ) |
| 79 | 78 | impr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 0 < 𝐵 ) |
| 80 | 74 79 55 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( 𝐵 ·e +∞ ) = +∞ ) |
| 81 | 73 80 | breq12d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ↔ +∞ ≤ +∞ ) ) |
| 82 | 69 81 | mpbiri | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
| 83 | 82 | expr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 0 < 𝐴 → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
| 84 | 39 67 83 | 3jaod | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
| 85 | 25 84 | mpd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
| 86 | oveq2 | ⊢ ( 𝐶 = +∞ → ( 𝐴 ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) | |
| 87 | oveq2 | ⊢ ( 𝐶 = +∞ → ( 𝐵 ·e 𝐶 ) = ( 𝐵 ·e +∞ ) ) | |
| 88 | 86 87 | breq12d | ⊢ ( 𝐶 = +∞ → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
| 89 | 85 88 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 = +∞ → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 90 | nltmnf | ⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) | |
| 91 | 1 90 | ax-mp | ⊢ ¬ 0 < -∞ |
| 92 | breq2 | ⊢ ( 𝐶 = -∞ → ( 0 < 𝐶 ↔ 0 < -∞ ) ) | |
| 93 | 91 92 | mtbiri | ⊢ ( 𝐶 = -∞ → ¬ 0 < 𝐶 ) |
| 94 | 93 | con2i | ⊢ ( 0 < 𝐶 → ¬ 𝐶 = -∞ ) |
| 95 | 94 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ¬ 𝐶 = -∞ ) |
| 96 | 95 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ¬ 𝐶 = -∞ ) |
| 97 | 96 | pm2.21d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 = -∞ → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 98 | 21 89 97 | 3jaod | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 99 | 7 98 | mpd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 100 | 99 | anassrs | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 101 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) | |
| 102 | 101 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
| 103 | 102 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
| 104 | pnfge | ⊢ ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* → ( 𝐴 ·e 𝐶 ) ≤ +∞ ) | |
| 105 | 103 104 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ +∞ ) |
| 106 | oveq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) | |
| 107 | xmulpnf2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( +∞ ·e 𝐶 ) = +∞ ) | |
| 108 | 107 | ad2ant2lr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( +∞ ·e 𝐶 ) = +∞ ) |
| 109 | 106 108 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐵 ·e 𝐶 ) = +∞ ) |
| 110 | 105 109 | breqtrrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 111 | 110 | adantlr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 112 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐴 ≤ 𝐵 ) | |
| 113 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) | |
| 114 | 26 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐴 ∈ ℝ* ) |
| 115 | mnfle | ⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) | |
| 116 | 114 115 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → -∞ ≤ 𝐴 ) |
| 117 | 113 116 | eqbrtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐵 ≤ 𝐴 ) |
| 118 | xrletri3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) | |
| 119 | 118 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 120 | 112 117 119 | mpbir2and | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐴 = 𝐵 ) |
| 121 | 120 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
| 122 | xmulcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) | |
| 123 | 122 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 124 | 123 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 125 | xrleid | ⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) | |
| 126 | 124 125 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 127 | 121 126 | eqbrtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 128 | 127 | adantlr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 129 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 130 | 30 129 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 131 | 130 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 132 | 100 111 128 131 | mpjao3dan | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 133 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐴 ≤ 𝐵 ) | |
| 134 | 30 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ∈ ℝ* ) |
| 135 | pnfge | ⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) | |
| 136 | 134 135 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ≤ +∞ ) |
| 137 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) | |
| 138 | 136 137 | breqtrrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ≤ 𝐴 ) |
| 139 | 118 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 140 | 133 138 139 | mpbir2and | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = 𝐵 ) |
| 141 | 140 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
| 142 | 123 125 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 143 | 142 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 144 | 141 143 | eqbrtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 145 | oveq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 𝐶 ) = ( -∞ ·e 𝐶 ) ) | |
| 146 | xmulmnf2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( -∞ ·e 𝐶 ) = -∞ ) | |
| 147 | 146 | ad2ant2lr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( -∞ ·e 𝐶 ) = -∞ ) |
| 148 | 145 147 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → ( 𝐴 ·e 𝐶 ) = -∞ ) |
| 149 | 123 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 150 | mnfle | ⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → -∞ ≤ ( 𝐵 ·e 𝐶 ) ) | |
| 151 | 149 150 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → -∞ ≤ ( 𝐵 ·e 𝐶 ) ) |
| 152 | 148 151 | eqbrtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 153 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 154 | 26 153 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 155 | 132 144 152 154 | mpjao3dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
| 156 | 155 | exp32 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 < 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
| 157 | xmul01 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = 0 ) | |
| 158 | 157 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 0 ) = 0 ) |
| 159 | xmul01 | ⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 ·e 0 ) = 0 ) | |
| 160 | 159 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 0 ) = 0 ) |
| 161 | 158 160 | breq12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 0 ) ≤ ( 𝐵 ·e 0 ) ↔ 0 ≤ 0 ) ) |
| 162 | 59 161 | mpbiri | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 0 ) ≤ ( 𝐵 ·e 0 ) ) |
| 163 | oveq2 | ⊢ ( 0 = 𝐶 → ( 𝐴 ·e 0 ) = ( 𝐴 ·e 𝐶 ) ) | |
| 164 | oveq2 | ⊢ ( 0 = 𝐶 → ( 𝐵 ·e 0 ) = ( 𝐵 ·e 𝐶 ) ) | |
| 165 | 163 164 | breq12d | ⊢ ( 0 = 𝐶 → ( ( 𝐴 ·e 0 ) ≤ ( 𝐵 ·e 0 ) ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 166 | 162 165 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 = 𝐶 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 167 | 166 | a1dd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 = 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
| 168 | 156 167 | jaod | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( ( 0 < 𝐶 ∨ 0 = 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
| 169 | 4 168 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 ≤ 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
| 170 | 169 | expimpd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
| 171 | 170 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 172 | 171 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |