This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulpnf1n | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ* ) | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -𝑒 𝐴 ·e +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
| 5 | xnegcl | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) | |
| 6 | xlt0neg1 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) | |
| 7 | 6 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 0 < -𝑒 𝐴 ) |
| 8 | xmulpnf1 | ⊢ ( ( -𝑒 𝐴 ∈ ℝ* ∧ 0 < -𝑒 𝐴 ) → ( -𝑒 𝐴 ·e +∞ ) = +∞ ) | |
| 9 | 5 7 8 | syl2an2r | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e +∞ ) = +∞ ) |
| 10 | 4 9 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e +∞ ) = +∞ ) |
| 11 | xnegmnf | ⊢ -𝑒 -∞ = +∞ | |
| 12 | 10 11 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ) |
| 13 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ·e +∞ ) ∈ ℝ* ) | |
| 14 | 1 2 13 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) ∈ ℝ* ) |
| 15 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 16 | xneg11 | ⊢ ( ( ( 𝐴 ·e +∞ ) ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ↔ ( 𝐴 ·e +∞ ) = -∞ ) ) | |
| 17 | 14 15 16 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ↔ ( 𝐴 ·e +∞ ) = -∞ ) ) |
| 18 | 12 17 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |