This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renepnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≠ +∞ ) |
| 3 | 2 | necon2bi | ⊢ ( 𝐴 = +∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 4 | 3 | adantl | ⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 5 | renemnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≠ -∞ ) |
| 7 | 6 | necon2bi | ⊢ ( 𝐴 = -∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 9 | 4 8 | jaoi | ⊢ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 10 | renepnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ +∞ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≠ +∞ ) |
| 12 | 11 | necon2bi | ⊢ ( 𝐵 = +∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 13 | 12 | adantl | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 14 | renemnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ -∞ ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≠ -∞ ) |
| 16 | 15 | necon2bi | ⊢ ( 𝐵 = -∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 18 | 13 17 | jaoi | ⊢ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 19 | 9 18 | jaoi | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 20 | 19 | con2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 21 | 20 | iffalsed | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
| 22 | 7 | adantl | ⊢ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 23 | 3 | adantl | ⊢ ( ( 𝐵 < 0 ∧ 𝐴 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 24 | 22 23 | jaoi | ⊢ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 25 | 16 | adantl | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 26 | 12 | adantl | ⊢ ( ( 𝐴 < 0 ∧ 𝐵 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 27 | 25 26 | jaoi | ⊢ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 28 | 24 27 | jaoi | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 29 | 28 | con2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 30 | 29 | iffalsed | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) ) |
| 31 | 21 30 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 32 | 31 | ifeq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , ( 𝐴 · 𝐵 ) ) ) |
| 33 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 34 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 35 | xmulval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) | |
| 36 | 33 34 35 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 37 | ifid | ⊢ if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , ( 𝐴 · 𝐵 ) , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) | |
| 38 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ) | |
| 39 | mul02lem2 | ⊢ ( 𝐵 ∈ ℝ → ( 0 · 𝐵 ) = 0 ) | |
| 40 | 39 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 · 𝐵 ) = 0 ) |
| 41 | 38 40 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
| 42 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 0 ) ) | |
| 43 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 44 | 43 | mul01d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 0 ) = 0 ) |
| 46 | 42 45 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
| 47 | 41 46 | jaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 · 𝐵 ) = 0 ) |
| 48 | 47 | ifeq1da | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , ( 𝐴 · 𝐵 ) , ( 𝐴 · 𝐵 ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , ( 𝐴 · 𝐵 ) ) ) |
| 49 | 37 48 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , ( 𝐴 · 𝐵 ) ) ) |
| 50 | 32 36 49 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |