This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mul01 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmul01 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | xmulval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 ·e 0 ) = if ( ( 𝐴 = 0 ∨ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 ∧ 𝐴 = +∞ ) ∨ ( 0 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = +∞ ) ∨ ( 𝐴 < 0 ∧ 0 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 0 ∧ 𝐴 = -∞ ) ∨ ( 0 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = -∞ ) ∨ ( 𝐴 < 0 ∧ 0 = +∞ ) ) ) , -∞ , ( 𝐴 · 0 ) ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = if ( ( 𝐴 = 0 ∨ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 ∧ 𝐴 = +∞ ) ∨ ( 0 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = +∞ ) ∨ ( 𝐴 < 0 ∧ 0 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 0 ∧ 𝐴 = -∞ ) ∨ ( 0 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = -∞ ) ∨ ( 𝐴 < 0 ∧ 0 = +∞ ) ) ) , -∞ , ( 𝐴 · 0 ) ) ) ) ) |
| 4 | eqid | ⊢ 0 = 0 | |
| 5 | 4 | olci | ⊢ ( 𝐴 = 0 ∨ 0 = 0 ) |
| 6 | 5 | iftruei | ⊢ if ( ( 𝐴 = 0 ∨ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 ∧ 𝐴 = +∞ ) ∨ ( 0 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = +∞ ) ∨ ( 𝐴 < 0 ∧ 0 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 0 ∧ 𝐴 = -∞ ) ∨ ( 0 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = -∞ ) ∨ ( 𝐴 < 0 ∧ 0 = +∞ ) ) ) , -∞ , ( 𝐴 · 0 ) ) ) ) = 0 |
| 7 | 3 6 | eqtrdi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = 0 ) |