This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul2a . (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul2a | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) | |
| 2 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) | |
| 3 | simpl3l | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ∈ ℝ* ) | |
| 4 | xmulcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
| 6 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 7 | xmulcom | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) | |
| 8 | 6 3 7 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
| 9 | 1 5 8 | 3brtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) |