This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nltmnf | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre | ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli | ⊢ ¬ -∞ ∈ ℝ |
| 3 | 2 | intnan | ⊢ ¬ ( 𝐴 ∈ ℝ ∧ -∞ ∈ ℝ ) |
| 4 | 3 | intnanr | ⊢ ¬ ( ( 𝐴 ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ 𝐴 <ℝ -∞ ) |
| 5 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 6 | 5 | nesymi | ⊢ ¬ -∞ = +∞ |
| 7 | 6 | intnan | ⊢ ¬ ( 𝐴 = -∞ ∧ -∞ = +∞ ) |
| 8 | 4 7 | pm3.2ni | ⊢ ¬ ( ( ( 𝐴 ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ 𝐴 <ℝ -∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ = +∞ ) ) |
| 9 | 6 | intnan | ⊢ ¬ ( 𝐴 ∈ ℝ ∧ -∞ = +∞ ) |
| 10 | 2 | intnan | ⊢ ¬ ( 𝐴 = -∞ ∧ -∞ ∈ ℝ ) |
| 11 | 9 10 | pm3.2ni | ⊢ ¬ ( ( 𝐴 ∈ ℝ ∧ -∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ ∈ ℝ ) ) |
| 12 | 8 11 | pm3.2ni | ⊢ ¬ ( ( ( ( 𝐴 ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ 𝐴 <ℝ -∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ -∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ ∈ ℝ ) ) ) |
| 13 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 14 | ltxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( 𝐴 < -∞ ↔ ( ( ( ( 𝐴 ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ 𝐴 <ℝ -∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ -∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ ∈ ℝ ) ) ) ) ) | |
| 15 | 13 14 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < -∞ ↔ ( ( ( ( 𝐴 ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ 𝐴 <ℝ -∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ -∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ -∞ ∈ ℝ ) ) ) ) ) |
| 16 | 12 15 | mtbiri | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |