This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | xmulval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ·e +∞ ) = if ( ( 𝐴 = 0 ∨ +∞ = 0 ) , 0 , if ( ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < +∞ ∧ 𝐴 = -∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = -∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = +∞ ) ) ) , -∞ , ( 𝐴 · +∞ ) ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e +∞ ) = if ( ( 𝐴 = 0 ∨ +∞ = 0 ) , 0 , if ( ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < +∞ ∧ 𝐴 = -∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = -∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = +∞ ) ) ) , -∞ , ( 𝐴 · +∞ ) ) ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = if ( ( 𝐴 = 0 ∨ +∞ = 0 ) , 0 , if ( ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < +∞ ∧ 𝐴 = -∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = -∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = +∞ ) ) ) , -∞ , ( 𝐴 · +∞ ) ) ) ) ) |
| 5 | 0xr | ⊢ 0 ∈ ℝ* | |
| 6 | xrltne | ⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 7 | 5 6 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | renepnf | ⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) | |
| 10 | 8 9 | ax-mp | ⊢ 0 ≠ +∞ |
| 11 | 10 | necomi | ⊢ +∞ ≠ 0 |
| 12 | neanior | ⊢ ( ( 𝐴 ≠ 0 ∧ +∞ ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∨ +∞ = 0 ) ) | |
| 13 | 7 11 12 | sylanblc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ ( 𝐴 = 0 ∨ +∞ = 0 ) ) |
| 14 | 13 | iffalsed | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → if ( ( 𝐴 = 0 ∨ +∞ = 0 ) , 0 , if ( ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < +∞ ∧ 𝐴 = -∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = -∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = +∞ ) ) ) , -∞ , ( 𝐴 · +∞ ) ) ) ) = if ( ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < +∞ ∧ 𝐴 = -∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = -∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = +∞ ) ) ) , -∞ , ( 𝐴 · +∞ ) ) ) ) |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 16 | eqid | ⊢ +∞ = +∞ | |
| 17 | 15 16 | jctir | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 0 < 𝐴 ∧ +∞ = +∞ ) ) |
| 18 | 17 | orcd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) |
| 19 | 18 | olcd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) ) |
| 20 | 19 | iftrued | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → if ( ( ( ( 0 < +∞ ∧ 𝐴 = +∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = +∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < +∞ ∧ 𝐴 = -∞ ) ∨ ( +∞ < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ +∞ = -∞ ) ∨ ( 𝐴 < 0 ∧ +∞ = +∞ ) ) ) , -∞ , ( 𝐴 · +∞ ) ) ) = +∞ ) |
| 21 | 4 14 20 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |