This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul1a . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul1a | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) <_ ( B *e C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | simpr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> C e. RR* ) |
|
| 3 | xrleloe | |- ( ( 0 e. RR* /\ C e. RR* ) -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
| 5 | simpllr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> C e. RR* ) |
|
| 6 | elxr | |- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
|
| 7 | 5 6 | sylib | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 8 | simplrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> A <_ B ) |
|
| 9 | simprll | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> A e. RR ) |
|
| 10 | simprlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> B e. RR ) |
|
| 11 | simprr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> C e. RR ) |
|
| 12 | simplrl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> 0 < C ) |
|
| 13 | lemul1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
|
| 14 | 9 10 11 12 13 | syl112anc | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
| 15 | 8 14 | mpbid | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A x. C ) <_ ( B x. C ) ) |
| 16 | rexmul | |- ( ( A e. RR /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) |
|
| 17 | 9 11 16 | syl2anc | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A *e C ) = ( A x. C ) ) |
| 18 | rexmul | |- ( ( B e. RR /\ C e. RR ) -> ( B *e C ) = ( B x. C ) ) |
|
| 19 | 10 11 18 | syl2anc | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( B *e C ) = ( B x. C ) ) |
| 20 | 15 17 19 | 3brtr4d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A *e C ) <_ ( B *e C ) ) |
| 21 | 20 | expr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR -> ( A *e C ) <_ ( B *e C ) ) ) |
| 22 | simprl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> A e. RR ) |
|
| 23 | 0re | |- 0 e. RR |
|
| 24 | lttri4 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
|
| 25 | 22 23 24 | sylancl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 26 | simplll | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> A e. RR* ) |
|
| 27 | 26 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> A e. RR* ) |
| 28 | xmulpnf1n | |- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) = -oo ) |
|
| 29 | 27 28 | sylan | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> ( A *e +oo ) = -oo ) |
| 30 | simpllr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> B e. RR* ) |
|
| 31 | 30 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> B e. RR* ) |
| 32 | 31 | adantr | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> B e. RR* ) |
| 33 | pnfxr | |- +oo e. RR* |
|
| 34 | xmulcl | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( B *e +oo ) e. RR* ) |
|
| 35 | 32 33 34 | sylancl | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> ( B *e +oo ) e. RR* ) |
| 36 | mnfle | |- ( ( B *e +oo ) e. RR* -> -oo <_ ( B *e +oo ) ) |
|
| 37 | 35 36 | syl | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> -oo <_ ( B *e +oo ) ) |
| 38 | 29 37 | eqbrtrd | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
| 39 | 38 | ex | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A < 0 -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
| 40 | oveq1 | |- ( A = 0 -> ( A *e +oo ) = ( 0 *e +oo ) ) |
|
| 41 | xmul02 | |- ( +oo e. RR* -> ( 0 *e +oo ) = 0 ) |
|
| 42 | 33 41 | ax-mp | |- ( 0 *e +oo ) = 0 |
| 43 | 40 42 | eqtrdi | |- ( A = 0 -> ( A *e +oo ) = 0 ) |
| 44 | 43 | adantl | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> ( A *e +oo ) = 0 ) |
| 45 | simplrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> A <_ B ) |
|
| 46 | breq1 | |- ( A = 0 -> ( A <_ B <-> 0 <_ B ) ) |
|
| 47 | 45 46 | syl5ibcom | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A = 0 -> 0 <_ B ) ) |
| 48 | simprr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> B e. RR ) |
|
| 49 | leloe | |- ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
|
| 50 | 23 48 49 | sylancr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 51 | 47 50 | sylibd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A = 0 -> ( 0 < B \/ 0 = B ) ) ) |
| 52 | 51 | imp | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> ( 0 < B \/ 0 = B ) ) |
| 53 | pnfge | |- ( 0 e. RR* -> 0 <_ +oo ) |
|
| 54 | 1 53 | ax-mp | |- 0 <_ +oo |
| 55 | xmulpnf1 | |- ( ( B e. RR* /\ 0 < B ) -> ( B *e +oo ) = +oo ) |
|
| 56 | 31 55 | sylan | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 < B ) -> ( B *e +oo ) = +oo ) |
| 57 | 54 56 | breqtrrid | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 < B ) -> 0 <_ ( B *e +oo ) ) |
| 58 | xrleid | |- ( 0 e. RR* -> 0 <_ 0 ) |
|
| 59 | 1 58 | ax-mp | |- 0 <_ 0 |
| 60 | 59 42 | breqtrri | |- 0 <_ ( 0 *e +oo ) |
| 61 | simpr | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 = B ) -> 0 = B ) |
|
| 62 | 61 | oveq1d | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 = B ) -> ( 0 *e +oo ) = ( B *e +oo ) ) |
| 63 | 60 62 | breqtrid | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 = B ) -> 0 <_ ( B *e +oo ) ) |
| 64 | 57 63 | jaodan | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ ( 0 < B \/ 0 = B ) ) -> 0 <_ ( B *e +oo ) ) |
| 65 | 52 64 | syldan | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> 0 <_ ( B *e +oo ) ) |
| 66 | 44 65 | eqbrtrd | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
| 67 | 66 | ex | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A = 0 -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
| 68 | pnfge | |- ( +oo e. RR* -> +oo <_ +oo ) |
|
| 69 | 33 68 | ax-mp | |- +oo <_ +oo |
| 70 | 26 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> A e. RR* ) |
| 71 | simprr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> 0 < A ) |
|
| 72 | xmulpnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
|
| 73 | 70 71 72 | syl2anc | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( A *e +oo ) = +oo ) |
| 74 | 30 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> B e. RR* ) |
| 75 | ltletr | |- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
|
| 76 | 23 75 | mp3an1 | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
| 77 | 76 | adantl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
| 78 | 45 77 | mpan2d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( 0 < A -> 0 < B ) ) |
| 79 | 78 | impr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> 0 < B ) |
| 80 | 74 79 55 | syl2anc | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( B *e +oo ) = +oo ) |
| 81 | 73 80 | breq12d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( ( A *e +oo ) <_ ( B *e +oo ) <-> +oo <_ +oo ) ) |
| 82 | 69 81 | mpbiri | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
| 83 | 82 | expr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( 0 < A -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
| 84 | 39 67 83 | 3jaod | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( A < 0 \/ A = 0 \/ 0 < A ) -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
| 85 | 25 84 | mpd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
| 86 | oveq2 | |- ( C = +oo -> ( A *e C ) = ( A *e +oo ) ) |
|
| 87 | oveq2 | |- ( C = +oo -> ( B *e C ) = ( B *e +oo ) ) |
|
| 88 | 86 87 | breq12d | |- ( C = +oo -> ( ( A *e C ) <_ ( B *e C ) <-> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
| 89 | 85 88 | syl5ibrcom | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C = +oo -> ( A *e C ) <_ ( B *e C ) ) ) |
| 90 | nltmnf | |- ( 0 e. RR* -> -. 0 < -oo ) |
|
| 91 | 1 90 | ax-mp | |- -. 0 < -oo |
| 92 | breq2 | |- ( C = -oo -> ( 0 < C <-> 0 < -oo ) ) |
|
| 93 | 91 92 | mtbiri | |- ( C = -oo -> -. 0 < C ) |
| 94 | 93 | con2i | |- ( 0 < C -> -. C = -oo ) |
| 95 | 94 | ad2antrl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> -. C = -oo ) |
| 96 | 95 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> -. C = -oo ) |
| 97 | 96 | pm2.21d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C = -oo -> ( A *e C ) <_ ( B *e C ) ) ) |
| 98 | 21 89 97 | 3jaod | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( C e. RR \/ C = +oo \/ C = -oo ) -> ( A *e C ) <_ ( B *e C ) ) ) |
| 99 | 7 98 | mpd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e C ) <_ ( B *e C ) ) |
| 100 | 99 | anassrs | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) /\ B e. RR ) -> ( A *e C ) <_ ( B *e C ) ) |
| 101 | xmulcl | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
|
| 102 | 101 | adantlr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
| 103 | 102 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( A *e C ) e. RR* ) |
| 104 | pnfge | |- ( ( A *e C ) e. RR* -> ( A *e C ) <_ +oo ) |
|
| 105 | 103 104 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( A *e C ) <_ +oo ) |
| 106 | oveq1 | |- ( B = +oo -> ( B *e C ) = ( +oo *e C ) ) |
|
| 107 | xmulpnf2 | |- ( ( C e. RR* /\ 0 < C ) -> ( +oo *e C ) = +oo ) |
|
| 108 | 107 | ad2ant2lr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( +oo *e C ) = +oo ) |
| 109 | 106 108 | sylan9eqr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( B *e C ) = +oo ) |
| 110 | 105 109 | breqtrrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( A *e C ) <_ ( B *e C ) ) |
| 111 | 110 | adantlr | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) /\ B = +oo ) -> ( A *e C ) <_ ( B *e C ) ) |
| 112 | simplrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> A <_ B ) |
|
| 113 | simpr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> B = -oo ) |
|
| 114 | 26 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> A e. RR* ) |
| 115 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 116 | 114 115 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> -oo <_ A ) |
| 117 | 113 116 | eqbrtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> B <_ A ) |
| 118 | xrletri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
|
| 119 | 118 | ad3antrrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 120 | 112 117 119 | mpbir2and | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> A = B ) |
| 121 | 120 | oveq1d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( A *e C ) = ( B *e C ) ) |
| 122 | xmulcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
|
| 123 | 122 | adantll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
| 124 | 123 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( B *e C ) e. RR* ) |
| 125 | xrleid | |- ( ( B *e C ) e. RR* -> ( B *e C ) <_ ( B *e C ) ) |
|
| 126 | 124 125 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( B *e C ) <_ ( B *e C ) ) |
| 127 | 121 126 | eqbrtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( A *e C ) <_ ( B *e C ) ) |
| 128 | 127 | adantlr | |- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) /\ B = -oo ) -> ( A *e C ) <_ ( B *e C ) ) |
| 129 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 130 | 30 129 | sylib | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 131 | 130 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 132 | 100 111 128 131 | mpjao3dan | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) -> ( A *e C ) <_ ( B *e C ) ) |
| 133 | simplrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> A <_ B ) |
|
| 134 | 30 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> B e. RR* ) |
| 135 | pnfge | |- ( B e. RR* -> B <_ +oo ) |
|
| 136 | 134 135 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> B <_ +oo ) |
| 137 | simpr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> A = +oo ) |
|
| 138 | 136 137 | breqtrrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> B <_ A ) |
| 139 | 118 | ad3antrrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 140 | 133 138 139 | mpbir2and | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> A = B ) |
| 141 | 140 | oveq1d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( A *e C ) = ( B *e C ) ) |
| 142 | 123 125 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( B *e C ) <_ ( B *e C ) ) |
| 143 | 142 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( B *e C ) <_ ( B *e C ) ) |
| 144 | 141 143 | eqbrtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( A *e C ) <_ ( B *e C ) ) |
| 145 | oveq1 | |- ( A = -oo -> ( A *e C ) = ( -oo *e C ) ) |
|
| 146 | xmulmnf2 | |- ( ( C e. RR* /\ 0 < C ) -> ( -oo *e C ) = -oo ) |
|
| 147 | 146 | ad2ant2lr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( -oo *e C ) = -oo ) |
| 148 | 145 147 | sylan9eqr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> ( A *e C ) = -oo ) |
| 149 | 123 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> ( B *e C ) e. RR* ) |
| 150 | mnfle | |- ( ( B *e C ) e. RR* -> -oo <_ ( B *e C ) ) |
|
| 151 | 149 150 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> -oo <_ ( B *e C ) ) |
| 152 | 148 151 | eqbrtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> ( A *e C ) <_ ( B *e C ) ) |
| 153 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 154 | 26 153 | sylib | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 155 | 132 144 152 154 | mpjao3dan | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( A *e C ) <_ ( B *e C ) ) |
| 156 | 155 | exp32 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 < C -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
| 157 | xmul01 | |- ( A e. RR* -> ( A *e 0 ) = 0 ) |
|
| 158 | 157 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( A *e 0 ) = 0 ) |
| 159 | xmul01 | |- ( B e. RR* -> ( B *e 0 ) = 0 ) |
|
| 160 | 159 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( B *e 0 ) = 0 ) |
| 161 | 158 160 | breq12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( ( A *e 0 ) <_ ( B *e 0 ) <-> 0 <_ 0 ) ) |
| 162 | 59 161 | mpbiri | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( A *e 0 ) <_ ( B *e 0 ) ) |
| 163 | oveq2 | |- ( 0 = C -> ( A *e 0 ) = ( A *e C ) ) |
|
| 164 | oveq2 | |- ( 0 = C -> ( B *e 0 ) = ( B *e C ) ) |
|
| 165 | 163 164 | breq12d | |- ( 0 = C -> ( ( A *e 0 ) <_ ( B *e 0 ) <-> ( A *e C ) <_ ( B *e C ) ) ) |
| 166 | 162 165 | syl5ibcom | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 = C -> ( A *e C ) <_ ( B *e C ) ) ) |
| 167 | 166 | a1dd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 = C -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
| 168 | 156 167 | jaod | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( ( 0 < C \/ 0 = C ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
| 169 | 4 168 | sylbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 <_ C -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
| 170 | 169 | expimpd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( C e. RR* /\ 0 <_ C ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
| 171 | 170 | 3impia | |- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) |
| 172 | 171 | imp | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) <_ ( B *e C ) ) |