This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct lexicographic order on a function space based on a reverse well-ordering of the indices and a well-ordering of the values. (Contributed by Mario Carneiro, 29-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapwe.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| wemapwe.u | ⊢ 𝑈 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | ||
| wemapwe.2 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| wemapwe.3 | ⊢ ( 𝜑 → 𝑆 We 𝐵 ) | ||
| wemapwe.4 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| wemapwe.5 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | ||
| wemapwe.6 | ⊢ 𝐺 = OrdIso ( 𝑆 , 𝐵 ) | ||
| wemapwe.7 | ⊢ 𝑍 = ( 𝐺 ‘ ∅ ) | ||
| Assertion | wemapwe | ⊢ ( 𝜑 → 𝑇 We 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapwe.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | wemapwe.u | ⊢ 𝑈 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| 3 | wemapwe.2 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 4 | wemapwe.3 | ⊢ ( 𝜑 → 𝑆 We 𝐵 ) | |
| 5 | wemapwe.4 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 6 | wemapwe.5 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| 7 | wemapwe.6 | ⊢ 𝐺 = OrdIso ( 𝑆 , 𝐵 ) | |
| 8 | wemapwe.7 | ⊢ 𝑍 = ( 𝐺 ‘ ∅ ) | |
| 9 | eqid | ⊢ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } | |
| 10 | eqid | ⊢ ( ◡ 𝐺 ‘ 𝑍 ) = ( ◡ 𝐺 ‘ 𝑍 ) | |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐴 ∈ V ) | |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑅 We 𝐴 ) |
| 13 | 6 | oiiso | ⊢ ( ( 𝐴 ∈ V ∧ 𝑅 We 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 15 | isof1o | ⊢ ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐵 ∈ V ) | |
| 18 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑆 We 𝐵 ) |
| 19 | 7 | oiiso | ⊢ ( ( 𝐵 ∈ V ∧ 𝑆 We 𝐵 ) → 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) ) |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) ) |
| 21 | isof1o | ⊢ ( 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) → 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ) | |
| 22 | f1ocnv | ⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 –1-1-onto→ dom 𝐺 ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ◡ 𝐺 : 𝐵 –1-1-onto→ dom 𝐺 ) |
| 24 | 6 | oiexg | ⊢ ( 𝐴 ∈ V → 𝐹 ∈ V ) |
| 25 | 24 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐹 ∈ V ) |
| 26 | 25 | dmexd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐹 ∈ V ) |
| 27 | 7 | oiexg | ⊢ ( 𝐵 ∈ V → 𝐺 ∈ V ) |
| 28 | 27 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐺 ∈ V ) |
| 29 | 28 | dmexd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐺 ∈ V ) |
| 30 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ) |
| 31 | f1ofo | ⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 → 𝐺 : dom 𝐺 –onto→ 𝐵 ) | |
| 32 | forn | ⊢ ( 𝐺 : dom 𝐺 –onto→ 𝐵 → ran 𝐺 = 𝐵 ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ran 𝐺 = 𝐵 ) |
| 34 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐵 ≠ ∅ ) |
| 35 | 33 34 | eqnetrd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ran 𝐺 ≠ ∅ ) |
| 36 | dm0rn0 | ⊢ ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ ) | |
| 37 | 36 | necon3bii | ⊢ ( dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅ ) |
| 38 | 35 37 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐺 ≠ ∅ ) |
| 39 | 7 | oicl | ⊢ Ord dom 𝐺 |
| 40 | ord0eln0 | ⊢ ( Ord dom 𝐺 → ( ∅ ∈ dom 𝐺 ↔ dom 𝐺 ≠ ∅ ) ) | |
| 41 | 39 40 | ax-mp | ⊢ ( ∅ ∈ dom 𝐺 ↔ dom 𝐺 ≠ ∅ ) |
| 42 | 38 41 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ∅ ∈ dom 𝐺 ) |
| 43 | 7 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ 𝐵 |
| 44 | 43 | ffvelcdmi | ⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 45 | 42 44 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 46 | 8 45 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑍 ∈ 𝐵 ) |
| 47 | 2 9 10 16 23 11 17 26 29 46 | mapfien | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } ) |
| 48 | eqid | ⊢ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } | |
| 49 | 7 | oion | ⊢ ( 𝐵 ∈ V → dom 𝐺 ∈ On ) |
| 50 | 49 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐺 ∈ On ) |
| 51 | 6 | oion | ⊢ ( 𝐴 ∈ V → dom 𝐹 ∈ On ) |
| 52 | 51 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐹 ∈ On ) |
| 53 | 48 50 52 | cantnfdm | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom ( dom 𝐺 CNF dom 𝐹 ) = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } ) |
| 54 | 8 | fveq2i | ⊢ ( ◡ 𝐺 ‘ 𝑍 ) = ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) |
| 55 | f1ocnvfv1 | ⊢ ( ( 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ∧ ∅ ∈ dom 𝐺 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ ) | |
| 56 | 30 42 55 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ ) |
| 57 | 54 56 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ◡ 𝐺 ‘ 𝑍 ) = ∅ ) |
| 58 | 57 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) ↔ 𝑥 finSupp ∅ ) ) |
| 59 | 58 | rabbidv | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } ) |
| 60 | 53 59 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom ( dom 𝐺 CNF dom 𝐹 ) = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } ) |
| 61 | 60 | f1oeq3d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ dom ( dom 𝐺 CNF dom 𝐹 ) ↔ ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } ) ) |
| 62 | 47 61 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ dom ( dom 𝐺 CNF dom 𝐹 ) ) |
| 63 | eqid | ⊢ dom ( dom 𝐺 CNF dom 𝐹 ) = dom ( dom 𝐺 CNF dom 𝐹 ) | |
| 64 | eqid | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } | |
| 65 | 63 50 52 64 | oemapwe | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } We dom ( dom 𝐺 CNF dom 𝐹 ) ∧ dom OrdIso ( { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } , dom ( dom 𝐺 CNF dom 𝐹 ) ) = ( dom 𝐺 ↑o dom 𝐹 ) ) ) |
| 66 | 65 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } We dom ( dom 𝐺 CNF dom 𝐹 ) ) |
| 67 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } | |
| 68 | 67 | f1owe | ⊢ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ dom ( dom 𝐺 CNF dom 𝐹 ) → ( { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } We dom ( dom 𝐺 CNF dom 𝐹 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } We 𝑈 ) ) |
| 69 | 62 66 68 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } We 𝑈 ) |
| 70 | weinxp | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } We 𝑈 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) | |
| 71 | 69 70 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) |
| 72 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
| 73 | f1ofn | ⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 → 𝐹 Fn dom 𝐹 ) | |
| 74 | fveq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 75 | fveq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑦 ‘ 𝑧 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 76 | 74 75 | breq12d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 77 | breq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 ) ) | |
| 78 | 77 | imbi1d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 79 | 78 | ralbidv | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 80 | 76 79 | anbi12d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 81 | 80 | rexrn | ⊢ ( 𝐹 Fn dom 𝐹 → ( ∃ 𝑧 ∈ ran 𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 82 | 72 73 81 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑧 ∈ ran 𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 83 | f1ofo | ⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 → 𝐹 : dom 𝐹 –onto→ 𝐴 ) | |
| 84 | forn | ⊢ ( 𝐹 : dom 𝐹 –onto→ 𝐴 → ran 𝐹 = 𝐴 ) | |
| 85 | 72 83 84 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ran 𝐹 = 𝐴 ) |
| 86 | 85 | rexeqdv | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑧 ∈ ran 𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 87 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐺 ∈ V ) |
| 88 | cnvexg | ⊢ ( 𝐺 ∈ V → ◡ 𝐺 ∈ V ) | |
| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ◡ 𝐺 ∈ V ) |
| 90 | vex | ⊢ 𝑥 ∈ V | |
| 91 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐹 ∈ V ) |
| 92 | coexg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) | |
| 93 | 90 91 92 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) |
| 94 | coexg | ⊢ ( ( ◡ 𝐺 ∈ V ∧ ( 𝑥 ∘ 𝐹 ) ∈ V ) → ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∈ V ) | |
| 95 | 89 93 94 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∈ V ) |
| 96 | vex | ⊢ 𝑦 ∈ V | |
| 97 | coexg | ⊢ ( ( 𝑦 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) | |
| 98 | 96 91 97 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) |
| 99 | coexg | ⊢ ( ( ◡ 𝐺 ∈ V ∧ ( 𝑦 ∘ 𝐹 ) ∈ V ) → ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ∈ V ) | |
| 100 | 89 98 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ∈ V ) |
| 101 | fveq1 | ⊢ ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) → ( 𝑎 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ) | |
| 102 | fveq1 | ⊢ ( 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) → ( 𝑏 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) | |
| 103 | eleq12 | ⊢ ( ( ( 𝑎 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ( 𝑏 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) → ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) ) | |
| 104 | 101 102 103 | syl2an | ⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) ) |
| 105 | fveq1 | ⊢ ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) → ( 𝑎 ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) ) | |
| 106 | fveq1 | ⊢ ( 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) → ( 𝑏 ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) | |
| 107 | 105 106 | eqeqan12d | ⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) |
| 108 | 107 | imbi2d | ⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ↔ ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) |
| 109 | 108 | ralbidv | ⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) |
| 110 | 104 109 | anbi12d | ⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ↔ ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 111 | 110 | rexbidv | ⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 112 | 111 64 | brabga | ⊢ ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∈ V ∧ ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ∈ V ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 113 | 95 100 112 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 114 | eqid | ⊢ ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) | |
| 115 | coeq1 | ⊢ ( 𝑓 = 𝑥 → ( 𝑓 ∘ 𝐹 ) = ( 𝑥 ∘ 𝐹 ) ) | |
| 116 | 115 | coeq2d | ⊢ ( 𝑓 = 𝑥 → ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ) |
| 117 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) | |
| 118 | 114 116 117 95 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ) |
| 119 | coeq1 | ⊢ ( 𝑓 = 𝑦 → ( 𝑓 ∘ 𝐹 ) = ( 𝑦 ∘ 𝐹 ) ) | |
| 120 | 119 | coeq2d | ⊢ ( 𝑓 = 𝑦 → ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) |
| 121 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) | |
| 122 | 114 120 121 100 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) |
| 123 | 118 122 | breq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ↔ ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) ) |
| 124 | 20 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) ) |
| 125 | isocnv | ⊢ ( 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) → ◡ 𝐺 Isom 𝑆 , E ( 𝐵 , dom 𝐺 ) ) | |
| 126 | 124 125 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ◡ 𝐺 Isom 𝑆 , E ( 𝐵 , dom 𝐺 ) ) |
| 127 | 2 | ssrab3 | ⊢ 𝑈 ⊆ ( 𝐵 ↑m 𝐴 ) |
| 128 | 127 117 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 129 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑥 : 𝐴 ⟶ 𝐵 ) | |
| 130 | 128 129 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 : 𝐴 ⟶ 𝐵 ) |
| 131 | 6 | oif | ⊢ 𝐹 : dom 𝐹 ⟶ 𝐴 |
| 132 | 131 | ffvelcdmi | ⊢ ( 𝑐 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑐 ) ∈ 𝐴 ) |
| 133 | ffvelcdm | ⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝐴 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) | |
| 134 | 130 132 133 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) |
| 135 | 127 121 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 136 | elmapi | ⊢ ( 𝑦 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) | |
| 137 | 135 136 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 : 𝐴 ⟶ 𝐵 ) |
| 138 | ffvelcdm | ⊢ ( ( 𝑦 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝐴 ) → ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) | |
| 139 | 137 132 138 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) |
| 140 | isorel | ⊢ ( ( ◡ 𝐺 Isom 𝑆 , E ( 𝐵 , dom 𝐺 ) ∧ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ∧ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) E ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) | |
| 141 | 126 134 139 140 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) E ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 142 | fvex | ⊢ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ V | |
| 143 | 142 | epeli | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) E ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 144 | 141 143 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 145 | 130 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝑥 : 𝐴 ⟶ 𝐵 ) |
| 146 | fco | ⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : dom 𝐹 ⟶ 𝐴 ) → ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) | |
| 147 | 145 131 146 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 148 | fvco3 | ⊢ ( ( ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) ) ) | |
| 149 | 147 148 | sylancom | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) ) ) |
| 150 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝑐 ∈ dom 𝐹 ) | |
| 151 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 152 | 131 150 151 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 153 | 152 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) ) = ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 154 | 149 153 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 155 | 137 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) |
| 156 | fco | ⊢ ( ( 𝑦 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : dom 𝐹 ⟶ 𝐴 ) → ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) | |
| 157 | 155 131 156 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 158 | fvco3 | ⊢ ( ( ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) ) ) | |
| 159 | 157 158 | sylancom | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) ) ) |
| 160 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 161 | 131 150 160 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 162 | 161 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) ) = ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 163 | 159 162 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 164 | 154 163 | eleq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 165 | 144 164 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) ) |
| 166 | 85 | raleqdv | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∀ 𝑤 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 167 | breq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) | |
| 168 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ 𝑤 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | |
| 169 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | |
| 170 | 168 169 | eqeq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 171 | 167 170 | imbi12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 172 | 171 | ralrn | ⊢ ( 𝐹 Fn dom 𝐹 → ( ∀ 𝑤 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 173 | 72 73 172 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∀ 𝑤 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 174 | 166 173 | bitr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 175 | 174 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 176 | epel | ⊢ ( 𝑐 E 𝑑 ↔ 𝑐 ∈ 𝑑 ) | |
| 177 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 178 | isorel | ⊢ ( ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑐 E 𝑑 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) | |
| 179 | 177 178 | sylancom | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑐 E 𝑑 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) |
| 180 | 176 179 | bitr3id | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑐 ∈ 𝑑 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) |
| 181 | 147 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 182 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → 𝑑 ∈ dom 𝐹 ) | |
| 183 | 181 182 | fvco3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 184 | 157 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 185 | 184 182 | fvco3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 186 | 183 185 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) ) |
| 187 | 30 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ) |
| 188 | f1of1 | ⊢ ( ◡ 𝐺 : 𝐵 –1-1-onto→ dom 𝐺 → ◡ 𝐺 : 𝐵 –1-1→ dom 𝐺 ) | |
| 189 | 187 22 188 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ◡ 𝐺 : 𝐵 –1-1→ dom 𝐺 ) |
| 190 | 181 182 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ) |
| 191 | 184 182 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ) |
| 192 | f1fveq | ⊢ ( ( ◡ 𝐺 : 𝐵 –1-1→ dom 𝐺 ∧ ( ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ∧ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ) ) → ( ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ↔ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) | |
| 193 | 189 190 191 192 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ↔ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 194 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑑 ∈ dom 𝐹 ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | |
| 195 | 131 182 194 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 196 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑑 ∈ dom 𝐹 ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | |
| 197 | 131 182 196 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 198 | 195 197 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 199 | 186 193 198 | 3bitrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 200 | 180 199 | imbi12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 201 | 200 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) ∧ 𝑑 ∈ dom 𝐹 ) → ( ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 202 | 201 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 203 | 175 202 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) |
| 204 | 165 203 | anbi12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 205 | 204 | rexbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 206 | 113 123 205 | 3bitr4rd | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ) ) |
| 207 | 82 86 206 | 3bitr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ) ) |
| 208 | 207 | ex | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ) ) ) |
| 209 | 208 | pm5.32rd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ↔ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) ) |
| 210 | 209 | opabbidv | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } ) |
| 211 | df-xp | ⊢ ( 𝑈 × 𝑈 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } | |
| 212 | 1 211 | ineq12i | ⊢ ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) |
| 213 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } | |
| 214 | 212 213 | eqtri | ⊢ ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } |
| 215 | 211 | ineq2i | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) |
| 216 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } | |
| 217 | 215 216 | eqtri | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } |
| 218 | 210 214 217 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) ) |
| 219 | weeq1 | ⊢ ( ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) → ( ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) ) | |
| 220 | 218 219 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) ) |
| 221 | 71 220 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) |
| 222 | weinxp | ⊢ ( 𝑇 We 𝑈 ↔ ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) | |
| 223 | 221 222 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑇 We 𝑈 ) |
| 224 | 223 | ex | ⊢ ( 𝜑 → ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → 𝑇 We 𝑈 ) ) |
| 225 | we0 | ⊢ 𝑇 We ∅ | |
| 226 | elmapex | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) → ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) | |
| 227 | 226 | con3i | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ¬ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 228 | 227 | pm2.21d | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) → ¬ 𝑥 finSupp 𝑍 ) ) |
| 229 | 228 | ralrimiv | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) |
| 230 | rabeq0 | ⊢ ( { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ↔ ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) | |
| 231 | 229 230 | sylibr | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ) |
| 232 | 2 231 | eqtrid | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → 𝑈 = ∅ ) |
| 233 | weeq2 | ⊢ ( 𝑈 = ∅ → ( 𝑇 We 𝑈 ↔ 𝑇 We ∅ ) ) | |
| 234 | 232 233 | syl | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑇 We 𝑈 ↔ 𝑇 We ∅ ) ) |
| 235 | 225 234 | mpbiri | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → 𝑇 We 𝑈 ) |
| 236 | 224 235 | pm2.61d1 | ⊢ ( 𝜑 → 𝑇 We 𝑈 ) |