This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption ( F(/) ) = (/) can be discharged using fveqf1o .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oef1o.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) | |
| oef1o.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | ||
| oef1o.a | ⊢ ( 𝜑 → 𝐴 ∈ ( On ∖ 1o ) ) | ||
| oef1o.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oef1o.c | ⊢ ( 𝜑 → 𝐶 ∈ On ) | ||
| oef1o.d | ⊢ ( 𝜑 → 𝐷 ∈ On ) | ||
| oef1o.z | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | ||
| oef1o.k | ⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) | ||
| oef1o.h | ⊢ 𝐻 = ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) | ||
| Assertion | oef1o | ⊢ ( 𝜑 → 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oef1o.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) | |
| 2 | oef1o.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | |
| 3 | oef1o.a | ⊢ ( 𝜑 → 𝐴 ∈ ( On ∖ 1o ) ) | |
| 4 | oef1o.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 5 | oef1o.c | ⊢ ( 𝜑 → 𝐶 ∈ On ) | |
| 6 | oef1o.d | ⊢ ( 𝜑 → 𝐷 ∈ On ) | |
| 7 | oef1o.z | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | |
| 8 | oef1o.k | ⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) | |
| 9 | oef1o.h | ⊢ 𝐻 = ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) | |
| 10 | eqid | ⊢ dom ( 𝐶 CNF 𝐷 ) = dom ( 𝐶 CNF 𝐷 ) | |
| 11 | 10 5 6 | cantnff1o | ⊢ ( 𝜑 → ( 𝐶 CNF 𝐷 ) : dom ( 𝐶 CNF 𝐷 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 12 | eqid | ⊢ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } | |
| 13 | eqid | ⊢ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } | |
| 14 | eqid | ⊢ ( 𝐹 ‘ ∅ ) = ( 𝐹 ‘ ∅ ) | |
| 15 | f1ocnv | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) | |
| 16 | 2 15 | syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 17 | ondif1 | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) | |
| 18 | 17 | simprbi | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 ) |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 20 | 12 13 14 16 1 4 3 6 5 19 | mapfien | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 21 | f1oeq1 | ⊢ ( 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) → ( 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ↔ ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) ) | |
| 22 | 8 21 | ax-mp | ⊢ ( 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ↔ ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 23 | 20 22 | sylibr | ⊢ ( 𝜑 → 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 24 | eqid | ⊢ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } | |
| 25 | 24 5 6 | cantnfdm | ⊢ ( 𝜑 → dom ( 𝐶 CNF 𝐷 ) = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } ) |
| 26 | 7 | breq2d | ⊢ ( 𝜑 → ( 𝑥 finSupp ( 𝐹 ‘ ∅ ) ↔ 𝑥 finSupp ∅ ) ) |
| 27 | 26 | rabbidv | ⊢ ( 𝜑 → { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } ) |
| 28 | 25 27 | eqtr4d | ⊢ ( 𝜑 → dom ( 𝐶 CNF 𝐷 ) = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 29 | 28 | f1oeq3d | ⊢ ( 𝜑 → ( 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ↔ 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) ) |
| 30 | 23 29 | mpbird | ⊢ ( 𝜑 → 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) |
| 31 | 3 | eldifad | ⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 32 | 12 31 4 | cantnfdm | ⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ) |
| 33 | 32 | f1oeq2d | ⊢ ( 𝜑 → ( 𝐾 : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ↔ 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) ) |
| 34 | 30 33 | mpbird | ⊢ ( 𝜑 → 𝐾 : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) |
| 35 | f1oco | ⊢ ( ( ( 𝐶 CNF 𝐷 ) : dom ( 𝐶 CNF 𝐷 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ∧ 𝐾 : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) → ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) | |
| 36 | 11 34 35 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 37 | eqid | ⊢ dom ( 𝐴 CNF 𝐵 ) = dom ( 𝐴 CNF 𝐵 ) | |
| 38 | 37 31 4 | cantnff1o | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐴 ↑o 𝐵 ) ) |
| 39 | f1ocnv | ⊢ ( ( 𝐴 CNF 𝐵 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐴 ↑o 𝐵 ) → ◡ ( 𝐴 CNF 𝐵 ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ dom ( 𝐴 CNF 𝐵 ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ◡ ( 𝐴 CNF 𝐵 ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ dom ( 𝐴 CNF 𝐵 ) ) |
| 41 | f1oco | ⊢ ( ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ dom ( 𝐴 CNF 𝐵 ) ) → ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) | |
| 42 | 36 40 41 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 43 | f1oeq1 | ⊢ ( 𝐻 = ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) → ( 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ↔ ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) ) | |
| 44 | 9 43 | ax-mp | ⊢ ( 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ↔ ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 45 | 42 44 | sylibr | ⊢ ( 𝜑 → 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |