This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection of the base sets induces a bijection on the set of finitely supported functions. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | ||
| mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | ||
| mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | ||
| mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | mapfien | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑆 –1-1-onto→ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| 2 | mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | |
| 3 | mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | |
| 4 | mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 5 | mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | |
| 6 | mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 7 | mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 8 | mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 9 | mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 10 | mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 11 | eqid | ⊢ ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) | |
| 12 | f1of | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 15 | breq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍 ) ) | |
| 16 | 15 1 | elrab2 | ⊢ ( 𝑓 ∈ 𝑆 ↔ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑓 finSupp 𝑍 ) ) |
| 17 | 16 | simplbi | ⊢ ( 𝑓 ∈ 𝑆 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 19 | elmapi | ⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 21 | f1of | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) | |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 24 | 20 23 | fcod | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 25 | 14 24 | fcod | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) |
| 26 | 9 8 | elmapd | ⊢ ( 𝜑 → ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) ) |
| 28 | 25 27 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 | mapfienlem1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) |
| 30 | breq1 | ⊢ ( 𝑥 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) → ( 𝑥 finSupp 𝑊 ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) ) | |
| 31 | 30 2 | elrab2 | ⊢ ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ 𝑇 ↔ ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ∧ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) ) |
| 32 | 28 29 31 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ 𝑇 ) |
| 33 | 1 2 3 4 5 6 7 8 9 10 | mapfienlem3 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ) |
| 34 | coass | ⊢ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) | |
| 35 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
| 36 | f1ococnv1 | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐶 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐶 ) ) |
| 38 | 37 | coeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) ) |
| 39 | f1ocnv | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) | |
| 40 | f1of | ⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) | |
| 41 | 5 39 40 | 3syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 43 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ 𝑇 ) | |
| 44 | breq1 | ⊢ ( 𝑥 = 𝑔 → ( 𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊 ) ) | |
| 45 | 44 2 | elrab2 | ⊢ ( 𝑔 ∈ 𝑇 ↔ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
| 46 | 43 45 | sylib | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
| 47 | 46 | simpld | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 48 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 50 | 42 49 | fcod | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 51 | 50 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 52 | fcoi1 | ⊢ ( ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 54 | 38 53 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 55 | 34 54 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 56 | 55 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) ) |
| 57 | coass | ⊢ ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) | |
| 58 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
| 59 | f1ococnv1 | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 61 | 60 | coeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 62 | 24 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 63 | fcoi2 | ⊢ ( ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 65 | 61 64 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 66 | 57 65 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 67 | 66 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ ( ◡ 𝐺 ∘ 𝑔 ) = ( 𝑓 ∘ 𝐹 ) ) ) |
| 68 | eqcom | ⊢ ( ( ◡ 𝐺 ∘ 𝑔 ) = ( 𝑓 ∘ 𝐹 ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) | |
| 69 | 67 68 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) ) |
| 70 | 56 69 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) ) |
| 71 | f1ofo | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –onto→ 𝐴 ) | |
| 72 | 35 71 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 : 𝐶 –onto→ 𝐴 ) |
| 73 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 74 | 18 19 73 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 Fn 𝐴 ) |
| 75 | 74 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑓 Fn 𝐴 ) |
| 76 | f1ocnv | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) | |
| 77 | f1of | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) | |
| 78 | 4 76 77 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 80 | 50 79 | fcod | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 81 | 80 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) |
| 82 | 81 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) |
| 83 | cocan2 | ⊢ ( ( 𝐹 : 𝐶 –onto→ 𝐴 ∧ 𝑓 Fn 𝐴 ∧ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ) ) | |
| 84 | 72 75 82 83 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ) ) |
| 85 | 5 39 | syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 87 | f1of1 | ⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ) | |
| 88 | 86 87 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ) |
| 89 | 49 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 90 | 25 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) |
| 91 | cocan1 | ⊢ ( ( ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ∧ 𝑔 : 𝐶 ⟶ 𝐷 ∧ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) | |
| 92 | 88 89 90 91 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
| 93 | 70 84 92 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
| 94 | 11 32 33 93 | f1o2d | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑆 –1-1-onto→ 𝑇 ) |