This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| Assertion | oiexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| 2 | 1 | ordtype | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 3 | isof1o | ⊢ ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) | |
| 4 | f1of1 | ⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 → 𝐹 : dom 𝐹 –1-1→ 𝐴 ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 : dom 𝐹 –1-1→ 𝐴 ) |
| 6 | f1f | ⊢ ( 𝐹 : dom 𝐹 –1-1→ 𝐴 → 𝐹 : dom 𝐹 ⟶ 𝐴 ) | |
| 7 | f1dmex | ⊢ ( ( 𝐹 : dom 𝐹 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → dom 𝐹 ∈ V ) | |
| 8 | fex | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V ) | |
| 9 | 6 7 8 | syl2an2r | ⊢ ( ( 𝐹 : dom 𝐹 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
| 10 | 9 | expcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : dom 𝐹 –1-1→ 𝐴 → 𝐹 ∈ V ) ) |
| 11 | 5 10 | syl5 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 ∈ V ) ) |
| 12 | 1 | oi0 | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 = ∅ ) |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | 12 13 | eqeltrdi | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 ∈ V ) |
| 15 | 11 14 | pm2.61d1 | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V ) |