This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1owe.1 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) } | |
| Assertion | f1owe | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1owe.1 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) } | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 3 | 2 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 5 | 4 | breq2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 6 | 3 5 1 | brabg | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) |
| 8 | df-isom | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) ) | |
| 9 | isowe | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐵 ) ) | |
| 10 | 8 9 | sylbir | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐵 ) ) |
| 11 | 7 10 | mpan2 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐵 ) ) |
| 12 | 11 | biimprd | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |