This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnosub.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnosub.5 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| lnosub.6 | ⊢ 𝑁 = ( −𝑣 ‘ 𝑊 ) | ||
| lnosub.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | lnosub | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnosub.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnosub.5 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | lnosub.6 | ⊢ 𝑁 = ( −𝑣 ‘ 𝑊 ) | |
| 4 | lnosub.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 10 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 11 | 1 6 7 8 9 10 4 | lnolin | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 12 | 5 11 | mp3anr1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 13 | 12 | ancom2s | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 14 | 1 7 9 2 | nvmval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) |
| 16 | 15 | 3ad2antl1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ) |
| 18 | simpl2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝑊 ∈ NrmCVec ) | |
| 19 | 1 6 4 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 20 | simpl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 21 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 23 | simpr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 24 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝑇 ‘ 𝐵 ) ∈ ( BaseSet ‘ 𝑊 ) ) | |
| 25 | 19 23 24 | syl2an | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ 𝐵 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 26 | 6 8 10 3 | nvmval2 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑇 ‘ 𝐵 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 27 | 18 22 25 26 | syl3anc | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 28 | 13 17 27 | 3eqtr4d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) ) |