This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmtri.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmtri.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| nvmtri.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvmtri | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmtri.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmtri.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | nvmtri.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | 1 5 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 7 | 4 6 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 9 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 10 | 1 9 3 | nvtri | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
| 11 | 8 10 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
| 12 | 1 9 5 2 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
| 14 | 1 5 3 | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 15 | 4 14 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | 16 | absnegi | ⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
| 18 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 19 | 17 18 | eqtri | ⊢ ( abs ‘ - 1 ) = 1 |
| 20 | 19 | oveq1i | ⊢ ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) = ( 1 · ( 𝑁 ‘ 𝐵 ) ) |
| 21 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
| 22 | 21 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℂ ) |
| 23 | 22 | mullidd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 · ( 𝑁 ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
| 24 | 20 23 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
| 25 | 15 24 | eqtr2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
| 28 | 11 13 27 | 3brtr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |