This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvpncan2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvpncan2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvpncan2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | simp1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑈 ∈ NrmCVec ) | |
| 5 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 6 | simp2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 8 | 1 2 7 3 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 9 | 4 5 6 8 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 10 | simp3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 11 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 12 | 1 7 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 13 | 11 12 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 15 | 1 2 | nvadd32 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) ) |
| 16 | 4 6 10 14 15 | syl13anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) ) |
| 17 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 18 | 1 2 7 17 | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) ) |
| 21 | 1 2 17 | nv0lid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) = 𝐵 ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) = 𝐵 ) |
| 23 | 20 22 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) = 𝐵 ) |
| 24 | 16 23 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = 𝐵 ) |
| 25 | 9 24 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = 𝐵 ) |