This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmoubi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1 2 3 4 5 | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) |
| 9 | 6 7 8 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) |
| 10 | 9 | breq1d | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
| 12 | 2 4 | nmosetre | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ) |
| 13 | 7 12 | mpan | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ) |
| 14 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 15 | 13 14 | sstrdi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ* ) |
| 16 | supxrleub | ⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) |
| 18 | 11 17 | bitrd | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) |
| 19 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 21 | 20 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 22 | 21 | ralab | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
| 23 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) | |
| 24 | ancomst | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) | |
| 25 | impexp | ⊢ ( ( ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) | |
| 26 | 24 25 | bitri | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) |
| 27 | 26 | albii | ⊢ ( ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) |
| 28 | fvex | ⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ V | |
| 29 | breq1 | ⊢ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑧 ≤ 𝐴 ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) | |
| 30 | 29 | imbi2d | ⊢ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 31 | 28 30 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 32 | 27 31 | bitri | ⊢ ( ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 33 | 32 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 34 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) | |
| 35 | 34 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
| 36 | 23 33 35 | 3bitr3i | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
| 37 | 22 36 | bitr4i | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 38 | 18 37 | bitrdi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |