This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvs.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvs.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvsge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( 𝐴 · ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nvs.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 6 | 1 2 3 | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 7 | 5 6 | syl3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 8 | absid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑋 ) → ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 · ( 𝑁 ‘ 𝐵 ) ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( 𝐴 · ( 𝑁 ‘ 𝐵 ) ) ) |