This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvgcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| Assertion | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvgcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | 2 | nvgrp | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
| 4 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 5 | 4 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 6 | 3 5 | syl3an1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |