This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabss | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | 1 | sseq1i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐵 ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐵 ) |
| 3 | abss | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐵 ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ) | |
| 4 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) ) |
| 6 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
| 8 | 2 3 7 | 3bitri | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |