This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ubth . Prove the reverse implication, using nmblolbi . (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ubth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ubth.2 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | ||
| ubthlem.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| ubthlem.4 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| ubthlem.5 | ⊢ 𝑈 ∈ CBan | ||
| ubthlem.6 | ⊢ 𝑊 ∈ NrmCVec | ||
| ubthlem.7 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) | ||
| Assertion | ubthlem3 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ↔ ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ubth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ubth.2 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | |
| 3 | ubthlem.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 4 | ubthlem.4 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 5 | ubthlem.5 | ⊢ 𝑈 ∈ CBan | |
| 6 | ubthlem.6 | ⊢ 𝑊 ∈ NrmCVec | |
| 7 | ubthlem.7 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) | |
| 8 | fveq1 | ⊢ ( 𝑢 = 𝑡 → ( 𝑢 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑧 ) ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑢 = 𝑡 → ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 10 | 9 | breq1d | ⊢ ( 𝑢 = 𝑡 → ( ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ) ) |
| 11 | 10 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ) |
| 12 | breq2 | ⊢ ( 𝑑 = 𝑐 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) ) | |
| 13 | 12 | ralbidv | ⊢ ( 𝑑 = 𝑐 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) ) |
| 14 | 11 13 | bitrid | ⊢ ( 𝑑 = 𝑐 → ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) ) |
| 15 | 14 | cbvrexvw | ⊢ ( ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) |
| 16 | 2fveq3 | ⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) | |
| 17 | 16 | breq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
| 18 | 17 | rexralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
| 19 | 15 18 | bitrid | ⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
| 20 | 19 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) | |
| 23 | 22 20 | sylib | ⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
| 24 | fveq1 | ⊢ ( 𝑢 = 𝑡 → ( 𝑢 ‘ 𝑑 ) = ( 𝑡 ‘ 𝑑 ) ) | |
| 25 | 24 | fveq2d | ⊢ ( 𝑢 = 𝑡 → ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ) |
| 26 | 25 | breq1d | ⊢ ( 𝑢 = 𝑡 → ( ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ) ) |
| 27 | 26 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ) |
| 28 | 2fveq3 | ⊢ ( 𝑑 = 𝑧 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ) | |
| 29 | 28 | breq1d | ⊢ ( 𝑑 = 𝑧 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 30 | 29 | ralbidv | ⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 31 | 27 30 | bitrid | ⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 32 | 31 | cbvrabv | ⊢ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 } |
| 33 | breq2 | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) ) | |
| 34 | 33 | ralbidv | ⊢ ( 𝑚 = 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) ) |
| 35 | 34 | rabbidv | ⊢ ( 𝑚 = 𝑘 → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 36 | 32 35 | eqtrid | ⊢ ( 𝑚 = 𝑘 → { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 37 | 36 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 38 | 1 2 3 4 5 6 21 23 37 | ubthlem1 | ⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) |
| 39 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 40 | 23 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
| 41 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑛 ∈ ℕ ) | |
| 42 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑦 ∈ 𝑋 ) | |
| 43 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 44 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) | |
| 45 | 1 2 3 4 5 6 39 40 37 41 42 43 44 | ubthlem2 | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |
| 46 | 45 | expr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
| 47 | 46 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) → ( ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
| 48 | 47 | rexlimdvva | ⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
| 49 | 38 48 | mpd | ⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |
| 50 | 49 | ex | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
| 51 | 20 50 | biimtrrid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
| 52 | simpr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) → 𝑑 ∈ ℝ ) | |
| 53 | bnnv | ⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) | |
| 54 | 5 53 | ax-mp | ⊢ 𝑈 ∈ NrmCVec |
| 55 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 56 | 1 55 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
| 57 | 54 56 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
| 58 | remulcl | ⊢ ( ( 𝑑 ∈ ℝ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) | |
| 59 | 52 57 58 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 60 | 7 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 61 | 60 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 62 | 61 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 63 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 64 | eqid | ⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) | |
| 65 | 1 63 64 | blof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 66 | 54 6 65 | mp3an12 | ⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 67 | 62 66 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 68 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑥 ∈ 𝑋 ) | |
| 69 | 67 68 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 70 | 63 2 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 71 | 6 70 | mpan | ⊢ ( ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 72 | 69 71 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 73 | eqid | ⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) | |
| 74 | 1 63 73 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ) |
| 75 | 54 6 74 | mp3an12 | ⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ) |
| 76 | 67 75 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ) |
| 77 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑑 ∈ ℝ ) | |
| 78 | 1 63 73 | nmogtmnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) → -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ) |
| 79 | 54 6 78 | mp3an12 | ⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ) |
| 80 | 67 79 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ) |
| 81 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) | |
| 82 | xrre | ⊢ ( ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ∧ 𝑑 ∈ ℝ ) ∧ ( -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ) | |
| 83 | 76 77 80 81 82 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ) |
| 84 | 57 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
| 85 | remulcl | ⊢ ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) | |
| 86 | 83 84 85 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 87 | 59 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 88 | 1 55 2 73 64 54 6 | nmblolbi | ⊢ ( ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 89 | 62 68 88 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 90 | 1 55 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) |
| 91 | 54 90 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) |
| 92 | 57 91 | jca | ⊢ ( 𝑥 ∈ 𝑋 → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 93 | 92 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 94 | lemul1a | ⊢ ( ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | |
| 95 | 83 77 93 81 94 | syl31anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 96 | 72 86 87 89 95 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 97 | 96 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 98 | 97 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 99 | brralrspcev | ⊢ ( ( ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) → ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) | |
| 100 | 59 98 99 | syl6an | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
| 101 | 100 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) → ( ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
| 102 | 101 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
| 103 | 51 102 | impbid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ↔ ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |