This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | ||
| ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | ||
| Assertion | ttukeylem7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 2 | ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 4 | ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | |
| 5 | fvex | ⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ V | |
| 6 | 5 | sucid | ⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 7 | 1 2 3 4 | ttukeylem6 | ⊢ ( ( 𝜑 ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∈ 𝐴 ) |
| 8 | 6 7 | mpan2 | ⊢ ( 𝜑 → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∈ 𝐴 ) |
| 9 | 1 2 3 4 | ttukeylem4 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐵 ) |
| 10 | 0elon | ⊢ ∅ ∈ On | |
| 11 | cardon | ⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On | |
| 12 | 0ss | ⊢ ∅ ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 13 | 10 11 12 | 3pm3.2i | ⊢ ( ∅ ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ∅ ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 14 | 1 2 3 4 | ttukeylem5 | ⊢ ( ( 𝜑 ∧ ( ∅ ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ∅ ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) → ( 𝐺 ‘ ∅ ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 15 | 13 14 | mpan2 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 16 | 9 15 | eqsstrrd | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) | |
| 18 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ 𝐵 ) | |
| 19 | undif1 | ⊢ ( ( 𝑦 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝑦 ∪ 𝐵 ) | |
| 20 | 18 19 | sseqtrri | ⊢ 𝑦 ⊆ ( ( 𝑦 ∖ 𝐵 ) ∪ 𝐵 ) |
| 21 | simpl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝜑 ) | |
| 22 | f1ocnv | ⊢ ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) –1-1-onto→ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) | |
| 23 | f1of | ⊢ ( ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) –1-1-onto→ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) ⟶ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) | |
| 24 | 1 22 23 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) ⟶ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) ⟶ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 26 | eldifi | ⊢ ( 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) → 𝑎 ∈ 𝑦 ) | |
| 27 | 26 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ 𝑦 ) |
| 28 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 29 | elunii | ⊢ ( ( 𝑎 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑎 ∈ ∪ 𝐴 ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ∪ 𝐴 ) |
| 31 | eldifn | ⊢ ( 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) → ¬ 𝑎 ∈ 𝐵 ) | |
| 32 | 31 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ¬ 𝑎 ∈ 𝐵 ) |
| 33 | 30 32 | eldifd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 34 | 25 33 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 35 | onelon | ⊢ ( ( ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) | |
| 36 | 11 34 35 | sylancr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) |
| 37 | onsuc | ⊢ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ On → suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) |
| 39 | 11 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ) |
| 40 | 11 | onordi | ⊢ Ord ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 41 | ordsucss | ⊢ ( Ord ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) | |
| 42 | 40 34 41 | mpsyl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 43 | 1 2 3 4 | ttukeylem5 | ⊢ ( ( 𝜑 ∧ ( suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ suc ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 44 | 21 38 39 42 43 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 45 | ssun2 | ⊢ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ⊆ ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) | |
| 46 | eloni | ⊢ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ On → Ord ( ◡ 𝐹 ‘ 𝑎 ) ) | |
| 47 | ordunisuc | ⊢ ( Ord ( ◡ 𝐹 ‘ 𝑎 ) → ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) = ( ◡ 𝐹 ‘ 𝑎 ) ) | |
| 48 | 36 46 47 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) = ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 50 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 51 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝑎 ∈ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) = 𝑎 ) | |
| 52 | 50 33 51 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 53 | 49 52 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 = ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 54 | velsn | ⊢ ( 𝑎 ∈ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ↔ 𝑎 = ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) | |
| 55 | 53 54 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) |
| 56 | 48 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 57 | ordelss | ⊢ ( ( Ord ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) | |
| 58 | 40 34 57 | sylancr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 59 | 1 2 3 4 | ttukeylem5 | ⊢ ( ( 𝜑 ∧ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) → ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 60 | 21 36 39 58 59 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 61 | 56 60 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 62 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) | |
| 63 | 61 62 | sstrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ 𝑦 ) |
| 64 | 53 27 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∈ 𝑦 ) |
| 65 | 64 | snssd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ⊆ 𝑦 ) |
| 66 | 63 65 | unssd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ⊆ 𝑦 ) |
| 67 | 1 2 3 | ttukeylem2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ⊆ 𝑦 ) ) → ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 ) |
| 68 | 21 28 66 67 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 ) |
| 69 | 68 | iftrued | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) = { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) |
| 70 | 55 69 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) |
| 71 | 45 70 | sselid | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) |
| 72 | 1 2 3 4 | ttukeylem3 | ⊢ ( ( 𝜑 ∧ suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) , if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∅ , 𝐵 , ∪ ( 𝐺 “ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) , ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) ) |
| 73 | 38 72 | syldan | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) , if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∅ , 𝐵 , ∪ ( 𝐺 “ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) , ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) ) |
| 74 | sucidg | ⊢ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ suc ( ◡ 𝐹 ‘ 𝑎 ) ) | |
| 75 | 34 74 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 76 | ordirr | ⊢ ( Ord ( ◡ 𝐹 ‘ 𝑎 ) → ¬ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( ◡ 𝐹 ‘ 𝑎 ) ) | |
| 77 | 36 46 76 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ¬ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 78 | nelne1 | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ suc ( ◡ 𝐹 ‘ 𝑎 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( ◡ 𝐹 ‘ 𝑎 ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ≠ ( ◡ 𝐹 ‘ 𝑎 ) ) | |
| 79 | 75 77 78 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ≠ ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 80 | 79 48 | neeqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ≠ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 81 | 80 | neneqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ¬ suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 82 | 81 | iffalsed | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) , if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∅ , 𝐵 , ∪ ( 𝐺 “ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) , ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) = ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) |
| 83 | 73 82 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) |
| 84 | 71 83 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 85 | 44 84 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 86 | 85 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) → 𝑎 ∈ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) ) |
| 87 | 86 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝑦 ∖ 𝐵 ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 88 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 89 | 87 88 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( ( 𝑦 ∖ 𝐵 ) ∪ 𝐵 ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 90 | 20 89 | sstrid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → 𝑦 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 91 | 17 90 | eqssd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) = 𝑦 ) |
| 92 | 91 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) = 𝑦 ) ) |
| 93 | npss | ⊢ ( ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ↔ ( ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) = 𝑦 ) ) | |
| 94 | 92 93 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) |
| 95 | 94 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) |
| 96 | sseq2 | ⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) ) | |
| 97 | psseq1 | ⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝑥 ⊊ 𝑦 ↔ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) | |
| 98 | 97 | notbid | ⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ¬ 𝑥 ⊊ 𝑦 ↔ ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) |
| 99 | 98 | ralbidv | ⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) |
| 100 | 96 99 | anbi12d | ⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ↔ ( 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) ) |
| 101 | 100 | rspcev | ⊢ ( ( ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∈ 𝐴 ∧ ( 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |
| 102 | 8 16 95 101 | syl12anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |