This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | ||
| ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | ||
| Assertion | ttukeylem6 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 2 | ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 4 | ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | |
| 5 | cardon | ⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On | |
| 6 | 5 | onsuci | ⊢ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On |
| 7 | 6 | a1i | ⊢ ( 𝜑 → suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ) |
| 8 | onelon | ⊢ ( ( suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → 𝐶 ∈ On ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → 𝐶 ∈ On ) |
| 10 | eleq1 | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ↔ 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) | |
| 11 | fveq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑎 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ↔ ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ) ) |
| 15 | eleq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ↔ 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) ) |
| 18 | 15 17 | imbi12d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ↔ ( 𝜑 → ( 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) ) ) ) |
| 20 | r19.21v | ⊢ ( ∀ 𝑎 ∈ 𝑦 ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ↔ ( 𝜑 → ∀ 𝑎 ∈ 𝑦 ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ) | |
| 21 | 6 | onordi | ⊢ Ord suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 22 | 21 | a1i | ⊢ ( 𝜑 → Ord suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 23 | ordelss | ⊢ ( ( Ord suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → 𝑦 ⊆ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) | |
| 24 | 22 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → 𝑦 ⊆ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 25 | 24 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑦 ) → 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 26 | biimt | ⊢ ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ↔ ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑦 ) → ( ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ↔ ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ) |
| 28 | 27 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ↔ ∀ 𝑎 ∈ 𝑦 ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ) |
| 29 | 6 | onssi | ⊢ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ⊆ On |
| 30 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) | |
| 31 | 29 30 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → 𝑦 ∈ On ) |
| 32 | 1 2 3 4 | ttukeylem3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 = ∪ 𝑦 , if ( 𝑦 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝑦 ) ) , ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ) ) |
| 33 | 31 32 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 = ∪ 𝑦 , if ( 𝑦 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝑦 ) ) , ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ) ) |
| 34 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑦 = ∅ ) → 𝐵 ∈ 𝐴 ) |
| 35 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) | |
| 36 | 35 | elin2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → 𝑤 ∈ Fin ) |
| 37 | 35 | elin1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → 𝑤 ∈ 𝒫 ∪ ( 𝐺 “ 𝑦 ) ) |
| 38 | 37 | elpwid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → 𝑤 ⊆ ∪ ( 𝐺 “ 𝑦 ) ) |
| 39 | 4 | tfr1 | ⊢ 𝐺 Fn On |
| 40 | fnfun | ⊢ ( 𝐺 Fn On → Fun 𝐺 ) | |
| 41 | funiunfv | ⊢ ( Fun 𝐺 → ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) = ∪ ( 𝐺 “ 𝑦 ) ) | |
| 42 | 39 40 41 | mp2b | ⊢ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) = ∪ ( 𝐺 “ 𝑦 ) |
| 43 | 38 42 | sseqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → 𝑤 ⊆ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) ) |
| 44 | dfss3 | ⊢ ( 𝑤 ⊆ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) ) | |
| 45 | eliun | ⊢ ( 𝑢 ∈ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝑦 𝑢 ∈ ( 𝐺 ‘ 𝑣 ) ) | |
| 46 | 45 | ralbii | ⊢ ( ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝑤 ∃ 𝑣 ∈ 𝑦 𝑢 ∈ ( 𝐺 ‘ 𝑣 ) ) |
| 47 | 44 46 | bitri | ⊢ ( 𝑤 ⊆ ∪ 𝑣 ∈ 𝑦 ( 𝐺 ‘ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝑤 ∃ 𝑣 ∈ 𝑦 𝑢 ∈ ( 𝐺 ‘ 𝑣 ) ) |
| 48 | 43 47 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → ∀ 𝑢 ∈ 𝑤 ∃ 𝑣 ∈ 𝑦 𝑢 ∈ ( 𝐺 ‘ 𝑣 ) ) |
| 49 | fveq2 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) | |
| 50 | 49 | eleq2d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝑢 ∈ ( 𝐺 ‘ 𝑣 ) ↔ 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 51 | 50 | ac6sfi | ⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑢 ∈ 𝑤 ∃ 𝑣 ∈ 𝑦 𝑢 ∈ ( 𝐺 ‘ 𝑣 ) ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 52 | 36 48 51 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 53 | eleq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) | |
| 54 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝜑 ) | |
| 55 | fveq2 | ⊢ ( 𝑎 = ∪ ran 𝑓 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ ∪ ran 𝑓 ) ) | |
| 56 | 55 | eleq1d | ⊢ ( 𝑎 = ∪ ran 𝑓 → ( ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ↔ ( 𝐺 ‘ ∪ ran 𝑓 ) ∈ 𝐴 ) ) |
| 57 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) → ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) | |
| 58 | 57 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) |
| 59 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → 𝑓 : 𝑤 ⟶ 𝑦 ) | |
| 60 | 59 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑓 : 𝑤 ⟶ 𝑦 ) |
| 61 | frn | ⊢ ( 𝑓 : 𝑤 ⟶ 𝑦 → ran 𝑓 ⊆ 𝑦 ) | |
| 62 | 60 61 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ⊆ 𝑦 ) |
| 63 | 31 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑦 ∈ On ) |
| 64 | onss | ⊢ ( 𝑦 ∈ On → 𝑦 ⊆ On ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑦 ⊆ On ) |
| 66 | 62 65 | sstrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ⊆ On ) |
| 67 | 36 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → 𝑤 ∈ Fin ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑤 ∈ Fin ) |
| 69 | ffn | ⊢ ( 𝑓 : 𝑤 ⟶ 𝑦 → 𝑓 Fn 𝑤 ) | |
| 70 | 60 69 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑓 Fn 𝑤 ) |
| 71 | dffn4 | ⊢ ( 𝑓 Fn 𝑤 ↔ 𝑓 : 𝑤 –onto→ ran 𝑓 ) | |
| 72 | 70 71 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑓 : 𝑤 –onto→ ran 𝑓 ) |
| 73 | fofi | ⊢ ( ( 𝑤 ∈ Fin ∧ 𝑓 : 𝑤 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 74 | 68 72 73 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ∈ Fin ) |
| 75 | dm0rn0 | ⊢ ( dom 𝑓 = ∅ ↔ ran 𝑓 = ∅ ) | |
| 76 | 59 | fdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → dom 𝑓 = 𝑤 ) |
| 77 | 76 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → ( dom 𝑓 = ∅ ↔ 𝑤 = ∅ ) ) |
| 78 | 75 77 | bitr3id | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → ( ran 𝑓 = ∅ ↔ 𝑤 = ∅ ) ) |
| 79 | 78 | necon3bid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → ( ran 𝑓 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) |
| 80 | 79 | biimpar | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ≠ ∅ ) |
| 81 | ordunifi | ⊢ ( ( ran 𝑓 ⊆ On ∧ ran 𝑓 ∈ Fin ∧ ran 𝑓 ≠ ∅ ) → ∪ ran 𝑓 ∈ ran 𝑓 ) | |
| 82 | 66 74 80 81 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ∪ ran 𝑓 ∈ ran 𝑓 ) |
| 83 | 62 82 | sseldd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ∪ ran 𝑓 ∈ 𝑦 ) |
| 84 | 56 58 83 | rspcdva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ( 𝐺 ‘ ∪ ran 𝑓 ) ∈ 𝐴 ) |
| 85 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → 𝜑 ) | |
| 86 | 31 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → 𝑦 ∈ On ) |
| 87 | 86 64 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → 𝑦 ⊆ On ) |
| 88 | ffvelcdm | ⊢ ( ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑢 ) ∈ 𝑦 ) | |
| 89 | 88 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑢 ) ∈ 𝑦 ) |
| 90 | 87 89 | sseldd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑢 ) ∈ On ) |
| 91 | 61 | ad2antrl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ran 𝑓 ⊆ 𝑦 ) |
| 92 | 91 87 | sstrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ran 𝑓 ⊆ On ) |
| 93 | vex | ⊢ 𝑓 ∈ V | |
| 94 | 93 | rnex | ⊢ ran 𝑓 ∈ V |
| 95 | 94 | ssonunii | ⊢ ( ran 𝑓 ⊆ On → ∪ ran 𝑓 ∈ On ) |
| 96 | 92 95 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ∪ ran 𝑓 ∈ On ) |
| 97 | 69 | ad2antrl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → 𝑓 Fn 𝑤 ) |
| 98 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → 𝑢 ∈ 𝑤 ) | |
| 99 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝑤 ∧ 𝑢 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) | |
| 100 | 97 98 99 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) |
| 101 | elssuni | ⊢ ( ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 → ( 𝑓 ‘ 𝑢 ) ⊆ ∪ ran 𝑓 ) | |
| 102 | 100 101 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑢 ) ⊆ ∪ ran 𝑓 ) |
| 103 | 1 2 3 4 | ttukeylem5 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ‘ 𝑢 ) ∈ On ∧ ∪ ran 𝑓 ∈ On ∧ ( 𝑓 ‘ 𝑢 ) ⊆ ∪ ran 𝑓 ) ) → ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ⊆ ( 𝐺 ‘ ∪ ran 𝑓 ) ) |
| 104 | 85 90 96 102 103 | syl13anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ⊆ ( 𝐺 ‘ ∪ ran 𝑓 ) ) |
| 105 | 104 | sseld | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ 𝑢 ∈ 𝑤 ) ) → ( 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) → 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) ) |
| 106 | 105 | anassrs | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ 𝑓 : 𝑤 ⟶ 𝑦 ) ∧ 𝑢 ∈ 𝑤 ) → ( 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) → 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) ) |
| 107 | 106 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) ∧ 𝑓 : 𝑤 ⟶ 𝑦 ) → ( ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) ) |
| 108 | 107 | expimpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → ( ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) → ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) ) |
| 109 | 108 | impr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) |
| 110 | 109 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) |
| 111 | dfss3 | ⊢ ( 𝑤 ⊆ ( 𝐺 ‘ ∪ ran 𝑓 ) ↔ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ∪ ran 𝑓 ) ) | |
| 112 | 110 111 | sylibr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑤 ⊆ ( 𝐺 ‘ ∪ ran 𝑓 ) ) |
| 113 | 1 2 3 | ttukeylem2 | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ ∪ ran 𝑓 ) ∈ 𝐴 ∧ 𝑤 ⊆ ( 𝐺 ‘ ∪ ran 𝑓 ) ) ) → 𝑤 ∈ 𝐴 ) |
| 114 | 54 84 112 113 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑤 ∈ 𝐴 ) |
| 115 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 116 | 1 2 3 | ttukeylem2 | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ ∅ ⊆ 𝐵 ) ) → ∅ ∈ 𝐴 ) |
| 117 | 115 116 | mpanr2 | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐴 ) → ∅ ∈ 𝐴 ) |
| 118 | 2 117 | mpdan | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 119 | 118 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → ∅ ∈ 𝐴 ) |
| 120 | 53 114 119 | pm2.61ne | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) ) ) → 𝑤 ∈ 𝐴 ) |
| 121 | 120 | expr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → ( ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) → 𝑤 ∈ 𝐴 ) ) |
| 122 | 121 | exlimdv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓 ‘ 𝑢 ) ) ) → 𝑤 ∈ 𝐴 ) ) |
| 123 | 52 122 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ) → 𝑤 ∈ 𝐴 ) |
| 124 | 123 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) → ( 𝑤 ∈ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) → 𝑤 ∈ 𝐴 ) ) |
| 125 | 124 | ssrdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) → ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ⊆ 𝐴 ) |
| 126 | 1 2 3 | ttukeylem1 | ⊢ ( 𝜑 → ( ∪ ( 𝐺 “ 𝑦 ) ∈ 𝐴 ↔ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ⊆ 𝐴 ) ) |
| 127 | 126 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) → ( ∪ ( 𝐺 “ 𝑦 ) ∈ 𝐴 ↔ ( 𝒫 ∪ ( 𝐺 “ 𝑦 ) ∩ Fin ) ⊆ 𝐴 ) ) |
| 128 | 125 127 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) → ∪ ( 𝐺 “ 𝑦 ) ∈ 𝐴 ) |
| 129 | 128 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) ∧ ¬ 𝑦 = ∅ ) → ∪ ( 𝐺 “ 𝑦 ) ∈ 𝐴 ) |
| 130 | 34 129 | ifclda | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = ∪ 𝑦 ) → if ( 𝑦 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝑦 ) ) ∈ 𝐴 ) |
| 131 | uneq2 | ⊢ ( { ( 𝐹 ‘ ∪ 𝑦 ) } = if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) → ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) = ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ) | |
| 132 | 131 | eleq1d | ⊢ ( { ( 𝐹 ‘ ∪ 𝑦 ) } = if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) → ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 ↔ ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ∈ 𝐴 ) ) |
| 133 | un0 | ⊢ ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ ∅ ) = ( 𝐺 ‘ ∪ 𝑦 ) | |
| 134 | uneq2 | ⊢ ( ∅ = if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) → ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ ∅ ) = ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ) | |
| 135 | 133 134 | eqtr3id | ⊢ ( ∅ = if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) → ( 𝐺 ‘ ∪ 𝑦 ) = ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ) |
| 136 | 135 | eleq1d | ⊢ ( ∅ = if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) → ( ( 𝐺 ‘ ∪ 𝑦 ) ∈ 𝐴 ↔ ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ∈ 𝐴 ) ) |
| 137 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) ∧ ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 ) → ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 ) | |
| 138 | fveq2 | ⊢ ( 𝑎 = ∪ 𝑦 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ ∪ 𝑦 ) ) | |
| 139 | 138 | eleq1d | ⊢ ( 𝑎 = ∪ 𝑦 → ( ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ↔ ( 𝐺 ‘ ∪ 𝑦 ) ∈ 𝐴 ) ) |
| 140 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) → ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) | |
| 141 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 142 | 141 | sucid | ⊢ ∪ 𝑦 ∈ suc ∪ 𝑦 |
| 143 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 144 | orduniorsuc | ⊢ ( Ord 𝑦 → ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) ) | |
| 145 | 31 143 144 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) ) |
| 146 | 145 | orcanai | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) → 𝑦 = suc ∪ 𝑦 ) |
| 147 | 142 146 | eleqtrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) |
| 148 | 139 140 147 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) → ( 𝐺 ‘ ∪ 𝑦 ) ∈ 𝐴 ) |
| 149 | 148 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) ∧ ¬ ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 ) → ( 𝐺 ‘ ∪ 𝑦 ) ∈ 𝐴 ) |
| 150 | 132 136 137 149 | ifbothda | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = ∪ 𝑦 ) → ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ∈ 𝐴 ) |
| 151 | 130 150 | ifclda | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → if ( 𝑦 = ∪ 𝑦 , if ( 𝑦 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝑦 ) ) , ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝑦 ) ∪ { ( 𝐹 ‘ ∪ 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝑦 ) } , ∅ ) ) ) ∈ 𝐴 ) |
| 152 | 33 151 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
| 153 | 152 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ∀ 𝑎 ∈ 𝑦 ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 154 | 28 153 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ∀ 𝑎 ∈ 𝑦 ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 155 | 154 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( ∀ 𝑎 ∈ 𝑦 ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 156 | 155 | com23 | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑦 ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 157 | 156 | a2i | ⊢ ( ( 𝜑 → ∀ 𝑎 ∈ 𝑦 ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 158 | 20 157 | sylbi | ⊢ ( ∀ 𝑎 ∈ 𝑦 ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 159 | 158 | a1i | ⊢ ( 𝑦 ∈ On → ( ∀ 𝑎 ∈ 𝑦 ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐴 ) ) → ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ) ) |
| 160 | 14 19 159 | tfis3 | ⊢ ( 𝐶 ∈ On → ( 𝜑 → ( 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) ) ) |
| 161 | 160 | impd | ⊢ ( 𝐶 ∈ On → ( ( 𝜑 ∧ 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) ) |
| 162 | 9 161 | mpcom | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝐴 ) |