This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . (Contributed by Mario Carneiro, 11-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | ||
| ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | ||
| Assertion | ttukeylem3 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ‘ 𝐶 ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 2 | ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 4 | ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | |
| 5 | 4 | tfr2 | ⊢ ( 𝐶 ∈ On → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) = ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | |
| 8 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → 𝑧 = ( 𝐺 ↾ 𝐶 ) ) | |
| 9 | 8 | dmeqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → dom 𝑧 = dom ( 𝐺 ↾ 𝐶 ) ) |
| 10 | 4 | tfr1 | ⊢ 𝐺 Fn On |
| 11 | onss | ⊢ ( 𝐶 ∈ On → 𝐶 ⊆ On ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → 𝐶 ⊆ On ) |
| 13 | fnssres | ⊢ ( ( 𝐺 Fn On ∧ 𝐶 ⊆ On ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) | |
| 14 | 10 12 13 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
| 15 | 14 | fndmd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → dom ( 𝐺 ↾ 𝐶 ) = 𝐶 ) |
| 16 | 9 15 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → dom 𝑧 = 𝐶 ) |
| 17 | 16 | unieqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ∪ dom 𝑧 = ∪ 𝐶 ) |
| 18 | 16 17 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( dom 𝑧 = ∪ dom 𝑧 ↔ 𝐶 = ∪ 𝐶 ) ) |
| 19 | 16 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( dom 𝑧 = ∅ ↔ 𝐶 = ∅ ) ) |
| 20 | 8 | rneqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ran 𝑧 = ran ( 𝐺 ↾ 𝐶 ) ) |
| 21 | df-ima | ⊢ ( 𝐺 “ 𝐶 ) = ran ( 𝐺 ↾ 𝐶 ) | |
| 22 | 20 21 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ran 𝑧 = ( 𝐺 “ 𝐶 ) ) |
| 23 | 22 | unieqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ∪ ran 𝑧 = ∪ ( 𝐺 “ 𝐶 ) ) |
| 24 | 19 23 | ifbieq2d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) = if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ) |
| 25 | 8 17 | fveq12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝑧 ‘ ∪ dom 𝑧 ) = ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ) |
| 26 | 17 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝐹 ‘ ∪ dom 𝑧 ) = ( 𝐹 ‘ ∪ 𝐶 ) ) |
| 27 | 26 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → { ( 𝐹 ‘ ∪ dom 𝑧 ) } = { ( 𝐹 ‘ ∪ 𝐶 ) } ) |
| 28 | 25 27 | uneq12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) = ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ) |
| 29 | 28 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 ↔ ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 ) ) |
| 30 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ∅ = ∅ ) | |
| 31 | 29 27 30 | ifbieq12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) = if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) |
| 32 | 25 31 | uneq12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) = ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) |
| 33 | 18 24 32 | ifbieq12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
| 34 | onuni | ⊢ ( 𝐶 ∈ On → ∪ 𝐶 ∈ On ) | |
| 35 | 34 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ On ) |
| 36 | sucidg | ⊢ ( ∪ 𝐶 ∈ On → ∪ 𝐶 ∈ suc ∪ 𝐶 ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
| 38 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → Ord 𝐶 ) |
| 40 | orduniorsuc | ⊢ ( Ord 𝐶 → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
| 42 | 41 | orcanai | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 = suc ∪ 𝐶 ) |
| 43 | 37 42 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ 𝐶 ) |
| 44 | 43 | fvresd | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) = ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 45 | 44 | uneq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) = ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ) |
| 46 | 45 | eleq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 ↔ ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 ) ) |
| 47 | 46 | ifbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) = if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) |
| 48 | 44 47 | uneq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) = ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) |
| 49 | 48 | ifeq2da | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
| 50 | 33 49 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
| 51 | fnfun | ⊢ ( 𝐺 Fn On → Fun 𝐺 ) | |
| 52 | 10 51 | ax-mp | ⊢ Fun 𝐺 |
| 53 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → 𝐶 ∈ On ) | |
| 54 | resfunexg | ⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 ↾ 𝐶 ) ∈ V ) | |
| 55 | 52 53 54 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ↾ 𝐶 ) ∈ V ) |
| 56 | 2 | elexd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 57 | funimaexg | ⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 “ 𝐶 ) ∈ V ) | |
| 58 | 52 57 | mpan | ⊢ ( 𝐶 ∈ On → ( 𝐺 “ 𝐶 ) ∈ V ) |
| 59 | 58 | uniexd | ⊢ ( 𝐶 ∈ On → ∪ ( 𝐺 “ 𝐶 ) ∈ V ) |
| 60 | ifcl | ⊢ ( ( 𝐵 ∈ V ∧ ∪ ( 𝐺 “ 𝐶 ) ∈ V ) → if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ∈ V ) | |
| 61 | 56 59 60 | syl2an | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ∈ V ) |
| 62 | fvex | ⊢ ( 𝐺 ‘ ∪ 𝐶 ) ∈ V | |
| 63 | snex | ⊢ { ( 𝐹 ‘ ∪ 𝐶 ) } ∈ V | |
| 64 | 0ex | ⊢ ∅ ∈ V | |
| 65 | 63 64 | ifex | ⊢ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ∈ V |
| 66 | 62 65 | unex | ⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ∈ V |
| 67 | ifcl | ⊢ ( ( if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ∈ V ∧ ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ∈ V ) → if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ∈ V ) | |
| 68 | 61 66 67 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ∈ V ) |
| 69 | 7 50 55 68 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
| 70 | 6 69 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ‘ 𝐶 ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |