This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Teichmüller-Tukey Lemma ttukey with a slightly stronger conclusion: we can set up the maximal element of A so that it also contains some given B e. A as a subset. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttukey2g | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( ∪ 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 | |
| 2 | ssnum | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ ( ∪ 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 ) → ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ) | |
| 3 | 1 2 | mpan2 | ⊢ ( ∪ 𝐴 ∈ dom card → ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ) |
| 4 | isnum3 | ⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ↔ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ≈ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 5 | bren | ⊢ ( ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ≈ ( ∪ 𝐴 ∖ 𝐵 ) ↔ ∃ 𝑓 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ↔ ∃ 𝑓 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 7 | simp1 | ⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 8 | simp2 | ⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) | |
| 9 | simp3 | ⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 10 | dmeq | ⊢ ( 𝑤 = 𝑧 → dom 𝑤 = dom 𝑧 ) | |
| 11 | 10 | unieqd | ⊢ ( 𝑤 = 𝑧 → ∪ dom 𝑤 = ∪ dom 𝑧 ) |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑤 = 𝑧 → ( dom 𝑤 = ∪ dom 𝑤 ↔ dom 𝑧 = ∪ dom 𝑧 ) ) |
| 13 | 10 | eqeq1d | ⊢ ( 𝑤 = 𝑧 → ( dom 𝑤 = ∅ ↔ dom 𝑧 = ∅ ) ) |
| 14 | rneq | ⊢ ( 𝑤 = 𝑧 → ran 𝑤 = ran 𝑧 ) | |
| 15 | 14 | unieqd | ⊢ ( 𝑤 = 𝑧 → ∪ ran 𝑤 = ∪ ran 𝑧 ) |
| 16 | 13 15 | ifbieq2d | ⊢ ( 𝑤 = 𝑧 → if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) = if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) ) |
| 17 | id | ⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) | |
| 18 | 17 11 | fveq12d | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ‘ ∪ dom 𝑤 ) = ( 𝑧 ‘ ∪ dom 𝑧 ) ) |
| 19 | 11 | fveq2d | ⊢ ( 𝑤 = 𝑧 → ( 𝑓 ‘ ∪ dom 𝑤 ) = ( 𝑓 ‘ ∪ dom 𝑧 ) ) |
| 20 | 19 | sneqd | ⊢ ( 𝑤 = 𝑧 → { ( 𝑓 ‘ ∪ dom 𝑤 ) } = { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) |
| 21 | 18 20 | uneq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) = ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ) |
| 22 | 21 | eleq1d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 ↔ ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 ) ) |
| 23 | 22 20 | ifbieq1d | ⊢ ( 𝑤 = 𝑧 → if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) = if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) |
| 24 | 18 23 | uneq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) = ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) |
| 25 | 12 16 24 | ifbieq12d | ⊢ ( 𝑤 = 𝑧 → if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) = if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) |
| 26 | 25 | cbvmptv | ⊢ ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) = ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) |
| 27 | recseq | ⊢ ( ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) = ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) → recs ( ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) ) = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) ) | |
| 28 | 26 27 | ax-mp | ⊢ recs ( ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) ) = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) |
| 29 | 7 8 9 28 | ttukeylem7 | ⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |
| 30 | 29 | 3expib | ⊢ ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 32 | 6 31 | sylbi | ⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 33 | 3 32 | syl | ⊢ ( ∪ 𝐴 ∈ dom card → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 34 | 33 | 3impib | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |