This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | ||
| ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | ||
| Assertion | ttukeylem4 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 2 | ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 4 | ttukeylem.4 | ⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) | |
| 5 | 0elon | ⊢ ∅ ∈ On | |
| 6 | 1 2 3 4 | ttukeylem3 | ⊢ ( ( 𝜑 ∧ ∅ ∈ On ) → ( 𝐺 ‘ ∅ ) = if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) ) |
| 7 | 5 6 | mpan2 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) ) |
| 8 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 9 | 8 | eqcomi | ⊢ ∅ = ∪ ∅ |
| 10 | 9 | iftruei | ⊢ if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) = if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) |
| 11 | eqid | ⊢ ∅ = ∅ | |
| 12 | 11 | iftruei | ⊢ if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) = 𝐵 |
| 13 | 10 12 | eqtri | ⊢ if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) = 𝐵 |
| 14 | 7 13 | eqtrdi | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐵 ) |