This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | ||
| Assertion | ttukeylem2 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶 ) ) → 𝐷 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 2 | ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 4 | simpr | ⊢ ( ( 𝜑 ∧ 𝐷 ⊆ 𝐶 ) → 𝐷 ⊆ 𝐶 ) | |
| 5 | 4 | sspwd | ⊢ ( ( 𝜑 ∧ 𝐷 ⊆ 𝐶 ) → 𝒫 𝐷 ⊆ 𝒫 𝐶 ) |
| 6 | ssrin | ⊢ ( 𝒫 𝐷 ⊆ 𝒫 𝐶 → ( 𝒫 𝐷 ∩ Fin ) ⊆ ( 𝒫 𝐶 ∩ Fin ) ) | |
| 7 | sstr2 | ⊢ ( ( 𝒫 𝐷 ∩ Fin ) ⊆ ( 𝒫 𝐶 ∩ Fin ) → ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → ( 𝒫 𝐷 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐷 ⊆ 𝐶 ) → ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → ( 𝒫 𝐷 ∩ Fin ) ⊆ 𝐴 ) ) |
| 9 | 1 2 3 | ttukeylem1 | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |
| 11 | 1 2 3 | ttukeylem1 | ⊢ ( 𝜑 → ( 𝐷 ∈ 𝐴 ↔ ( 𝒫 𝐷 ∩ Fin ) ⊆ 𝐴 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐷 ∈ 𝐴 ↔ ( 𝒫 𝐷 ∩ Fin ) ⊆ 𝐴 ) ) |
| 13 | 8 10 12 | 3imtr4d | ⊢ ( ( 𝜑 ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐶 ∈ 𝐴 → 𝐷 ∈ 𝐴 ) ) |
| 14 | 13 | impancom | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 ⊆ 𝐶 → 𝐷 ∈ 𝐴 ) ) |
| 15 | 14 | impr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶 ) ) → 𝐷 ∈ 𝐴 ) |