This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If A is a nonempty collection of finite character, then A has a maximal element with respect to inclusion. Here "finite character" means that x e. A iff every finite subset of x is in A . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ttukey.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ttukey | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukey.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | uniex | ⊢ ∪ 𝐴 ∈ V |
| 3 | numth3 | ⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ∈ dom card ) | |
| 4 | 2 3 | ax-mp | ⊢ ∪ 𝐴 ∈ dom card |
| 5 | ttukeyg | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) | |
| 6 | 4 5 | mp3an1 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |